RESUMO
This study uses the Weibull analysis to predict the robustness of various mortars based on a fracture process analysis through a flexural test recorded by an acoustic emission sensor. Alkali-activated materials (AAMs) are an alternative to Portland cement that can decrease the amount of emitted CO2. This study aimed to characterise and compare the properties of AAM cement mortars to those of the commonly used ordinary Portland cement (OPC) mortars using the Weibull distribution to clarify the reliability and robustness of the prepared AAM cements; four different AAM cement mortar compositions-with fly ash (F), ground-granulated blast-furnace slag (G), and microsilica (M) alkali activation (sodium hydroxide (NaOH) and sodium silicate (Na2SiO3))-were considered in this study. The fracture process under a flexural loading of AAMs was based on four combinations of F/G/M activated by the alkaline solution-AAM-IV, AAM-V, AAM-VI, and AAM-VII, with OPC as control. The Weibull analysis showed that AAMs were more robust than the OPC mortar and possessed minor fractures compared to the OPC mortar.
RESUMO
This research investigates the properties of alkali-activated materials (AAMs) using sodium metasilicate, with the ratio of SiO2:Na2O equals 1. This study was conducted to achieve the following three aims. Firstly, to understand the solubility mechanism of granular sodium metasilicate pentahydrate (Na2SiO3.5H2O) when used in a one-part mixing method. Secondly, to investigate the properties of AAMs when a sodium metasilicate aqueous solution is used as an alkaline material and as a source of silica. Lastly, to study the retardation effect of sucrose on AAMs. This research used aluminum silicate precursors, such as low-calcium fly ash, slag, and micros silica, alkali activators, such as NaOH pellets and Na2SiO3.5H2O, and standardized sand. The alkaline activators were first dissolved in water using a water bath shaker to achieve the alkaline solution. Sucrose, which is about 2% of the weight of the solid precursors, was added to modify the reaction process between the precursors and the alkaline materials. Four types of samples were prepared: M1, M2, M3, and M4, with the fly ash, slag, and silica fume ratios of 80:20:0, 70:30:0, 75:20:5, and 100:0:0, respectively. The research conducted solubility test of the alkaline materials, flowability, 7-, 28-, 56-day compressive and flexural tests, drying shrinkage test of mortar samples, and the setting tests of pastes with and without sucrose. The results show that the dissolution time of the NaOH was much shorter, whereas Na2SiO3.5H2O needed a solvent with a temperature of around 40 °C to be fully dissolved. This problem of solubility decreases the quality of AAMs formed using the one-part mixing method. Among the mortar samples, the M4 had the highest flow rate, while M3 had the lowest flow rate. M2 had the highest compressive and flexural strength of 43.4 MPa and 6.1 MPa, respectively. The setting time test shows that sucrose retards the reaction process in AAM.
RESUMO
Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field-effect transistors (FETs), and coherent (or band-like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p-type OSC SCs compatible with a printing technology have been used to achieve high-speed FETs; therefore, developments of n-type counterparts may be promising for realizing high-speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state-of-the-art, air-stable n-type OSC, PhC2 -BQQDI, by means of variable-temperature gated Hall effect measurements and X-ray single-crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high-speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2 -BQQDI is shown as a new candidate for practical applications of SC-based, organic complementary devices.
RESUMO
Transistors, the most important logic elements, are maintained under dynamic influence during circuit operations. Practically, circuit design protocols and frequency responsibility should stem from a perfect agreement between the static and dynamic properties. However, despite remarkable improvements in mobility for organic semiconductors, the correlation between the device performances achieved under static and dynamic circumstances is controversial. Particularly in the case of organic semiconductors, it remains unclear whether parasitic elements that relate to their unique molecular aggregates may violate the radiofrequency circuit model. Thus, we herein report the manufacture of micrometre-scale transistor arrays composed of solution-processed organic semiconductors, which achieve near very high-frequency band operations. Systematic investigations into the device geometrical factors revealed that the radiofrequency circuit model established on a solid-state continuous medium is extendable to organic single-crystal field-effect transistors. The validity of this radiofrequency circuit model allows a reliable prediction of the performances of organic radiofrequency devices.
RESUMO
Solution-processed organic thin film transistors (OTFTs) are an essential building block for next-generation printed electronic devices. Organic semiconductors (OSCs) that can spontaneously form a molecular assembly play a vital role in the fabrication of OTFTs. OTFT fabrication processes consist of sequential deposition of functional layers, which inherently brings significant difficulties in realizing ideal properties because underlayers are likely to be damaged by application of subsequent layers. These difficulties are particularly prominent when forming metal contact electrodes directly on an OSC surface, due to thermal damage during vacuum evaporation and the effect of solvents during subsequent photolithography. In this work, we demonstrate a simple and facile technique to transfer contact electrodes to ultrathin OSC films and form an ideal metal/OSC interface. Photolithographically defined metal electrodes are transferred and laminated using a polymeric bilayer thin film. One layer is a thick sacrificial polymer film that makes the overall film easier to handle and is water-soluble for dissolution later. The other is a thin buffer film that helps the template adhere to a substrate electrostatically. The present technique does not induce any fatal damage in the substrate OSC layers, which leads to successful fabrication of OTFTs composed of monolayer OSC films with a mobility of higher than 10 cm2 V-1 s-1, a subthreshold swing of less than 100 mV decade-1, and a low contact resistance of 175 Ωâ cm. The reproducibility of efficient contact fabrication was confirmed by the operation of a 10 × 10 array of monolayer OTFTs. The technique developed here constitutes a key step forward not only for practical OTFT fabrication but also potentially for all existing vertically stacked organic devices, such as light-emitting diodes and solar cells.
RESUMO
Building on significant developments in materials science and printing technologies, organic semiconductors (OSCs) promise an ideal platform for the production of printed electronic circuits. However, whether their unique solution-processing capability can facilitate the reliable mass manufacture of integrated circuits with reasonable areal coverage, and to what extent mass production of solution-processed electronic devices would allow substantial reductions in manufacturing costs, remain controversial. In the present study, we successfully manufactured a 4-inch (c.a. 100 mm) organic single-crystalline wafer via a simple, one-shot printing technique, on which 1,600 organic transistors were integrated and characterized. Owing to their single-crystalline nature, we were able to verify remarkably high reliability and reproducibility, with mobilities up to 10 cm2 V-1 s-1, a near-zero turn-on voltage, and excellent on-off ratio of approximately 107. This work provides a critical milestone in printed electronics, enabling industry-level manufacturing of OSC devices concomitantly with lowered manufacturing costs.
RESUMO
Two-dimensional (2D) layered semiconductors are a novel class of functional materials that are an ideal platform for electronic applications, where the whole electronic states are directly modified by external stimuli adjacent to their electronic channels. Scale-up of the areal coverage while maintaining homogeneous single crystals has been the relevant challenge. We demonstrate that wafer-size single crystals composed of an organic semiconductor bimolecular layer with an excellent mobility of 10 cm2 V-1 s-1 can be successfully formed via a simple one-shot solution process. The well-controlled process to achieve organic single crystals composed of minimum molecular units realizes unprecedented low contact resistance and results in high-speed transistor operation of 20 MHz, which is twice as high as the common frequency used in near-field wireless communication. The capability of the solution process for scale-up coverage of high-mobility organic semiconductors opens up the way for novel 2D nanomaterials to realize products with large-scale integrated circuits on film-based devices.