Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132040, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702003

RESUMO

Decellularized vascular tissue has high potential as a tissue-engineered vascular graft because of its similarity to native vessels in terms of mechanical strength. However, exposed collagen on the tissue induces blood coagulation, and low hemocompatibility is a major obstacle to its vascular application. Here we report that freeze-drying and ethanol treatment effectively modify collagen fiber structure and drastically reduce blood coagulation on the graft surface without exogenous chemical modification. Decellularized carotid artery of ostrich was treated with freeze-drying and ethanol solution at concentrations ranging between 5 and 99.5 %. Collagen fiber distance in the graft was narrowed by freeze-drying, and the non-helical region increased by ethanol treatment. Although in vitro blood coagulation pattern was similar on the grafts, platelet adhesion on the grafts was largely suppressed by freeze-drying and ethanol treatments. Ex vivo blood circulation tests also indicated that the adsorption of platelets and Von Willebrand Factor was largely reduced to approximately 80 % by ethanol treatment. These results indicate that structural modification of collagen fibers in decellularized tissue reduces blood coagulation on the surface by inhibiting platelet adhesion.


Assuntos
Coagulação Sanguínea , Colágeno , Adesividade Plaquetária , Animais , Adesividade Plaquetária/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Colágeno/química , Engenharia Tecidual/métodos , Teste de Materiais , Liofilização , Prótese Vascular , Alicerces Teciduais/química , Plaquetas/metabolismo , Plaquetas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Artérias Carótidas/efeitos dos fármacos , Humanos , Etanol/química
2.
Regen Ther ; 26: 2-8, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38361603

RESUMO

Introduction: Terminal sterilization is important for the clinical applicability of decellularized xenografts. High hydrostatic pressurization (HHP) process is a potential strategy for decellularization and decontamination of xenografts; however, its disinfection efficiency remains poorly elucidated. This study investigated the disinfection efficacy of the HHP process at physiologically relevant 36 °C against difficult-to-kill spore-forming bacteria. Methods: Bacillus atrophaeus and Geobacillus stearothermophilus were suspended in a pressurization medium with or without antibiotic agents and pressurized under two different HHP procedures: repeated and sustained pressurization. Results: The sustained pressurizing conditions, exploited for the conventional tissue decellularization, did not effectively eliminate the bacteria; however, repeated pressurization greatly increased the disinfection effect. Moreover, the antibiotic-containing pressurization medium further increased the disinfection efficiency to the level required for sterilization. Conclusions: The optimized high hydrostatic pressurization can be used to sterilize biological tissues during the decellularization process and is a promising strategy for manufacturing tissue-derived healthcare products.

3.
Regen Ther ; 25: 220-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38260087

RESUMO

Background: Breast reconstruction is crucial for patients who have undergone mastectomy for breast cancer. Our bioabsorbable implants comprising an outer poly-l-lactic acid mesh and an inner component filled with collagen sponge promote and retain adipogenesis in vivo without the addition of exogenous cells or growth factors. In this study, we evaluated adipogenesis over time histologically and at the gene expression level using this implant in a rodent model. Methods: The implants were inserted in the inguinal and dorsal regions of the animals. At 1, 3, 6, and 12 months post-operation, the weight, volume, and histological assessment of all newly formed tissue were performed. We analyzed the formation of new adipose tissue using multiphoton microscopy and RNA sequencing. Results: Both in the inguinal and dorsal regions, adipose tissue began to form 1 month post-operation in the peripheral area. Angiogenesis into implants was observed until 3 months. At 6 months, microvessels matured and the amount of newly generated adipose tissue peaked and was uniformly distributed inside implants. The amount of newly generated adipose tissue decreased from 6 to 12 months but at 12 months, adipose tissue was equivalent to the native tissue histologically and in terms of gene expression. Conclusions: Our bioabsorbable implants could induce normal adipogenesis into the implants after subcutaneous implantation. Our implants can serve as a novel and safe material for breast reconstruction without requiring exogenous cells or growth factors.

4.
Acta Biomater ; 176: 116-127, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232911

RESUMO

Decellularized vessels (DVs) have the potential to serve as available grafts for small-diameter vascular (<6 mm) reconstruction. However, the absence of functional endothelia makes them likely to trigger platelet aggregation and thrombosis. Luminal surface modification is an efficient approach to prevent thrombosis and promote endothelialization. Previously, we identified a hemocompatible peptide, HGGVRLY, that showed endothelial affinity and antiplatelet ability. By conjugating HGGVRLY with a phenylazide group, we generated a photoreactive peptide that can be modified onto multiple materials, including non-denatured extracellular matrices. To preserve the natural collagen of DVs as much as possible, we used a lower ultrahydrostatic pressure than that previously reported to prepare decellularized grafts. The photoreactive HGGVRLY peptide could be modified onto DV grafts via UV exposure for only 2 min. Modified DVs showed improved endothelial affinity and antiplatelet ability in vitro. When rat abdominal aortas were replaced with DVs, modified DVs with more natural collagen demonstrated the highest patent rate after 10 weeks. Moreover, the photoreactive peptide remained on the lumen surface of DVs over two months after implantation. Therefore, the photoreactive peptide could be efficiently and sustainably modified onto DVs with more natural collagens, resulting in improved hemocompatibility. STATEMENT OF SIGNIFICANCE: We employed a relatively lower ultrahydrostatic pressure to prepare decellularized vessels (DVs) with less denatured collagens to provide a more favorable environment for cell migration and proliferation. The hemocompatibility of DV luminal surface can be enhanced by peptide modification, but undenatured collagens are difficult to modify. We innovatively introduce a phenylazide group into the hemocompatible peptide HGGVRLY, which we previously identified to possess endothelial affinity and antiplatelet ability, to generate a photoreactive peptide. The photoreactive peptide can be efficiently and stably modified onto DVs with more natural collagens. DV grafts modified with photoreactive peptide exhibit enhanced in vivo patency. Furthermore, the sustainability of photoreactive peptide modification on DV grafts within bloodstream is evident after two months of transplantation.


Assuntos
Azidas , Prótese Vascular , Trombose , Ratos , Animais , Peptídeos/farmacologia , Trombose/prevenção & controle , Trombose/metabolismo , Colágeno/farmacologia
5.
Acta Biomater ; 176: 221-233, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242190

RESUMO

Intramyocardial hydrogel injection is a promising therapy to prevent negative remodeling following myocardial infarction (MI). In this study, we report a mechanism for in-situ gel formation without external stimulation, resulting in an injectable and tissue-retainable hydrogel for MI treatment, and investigate its therapeutic outcomes. A liquid-like polymeric solution comprising poly(3-acrylamidophenylboronic acid-co-acrylamide) (BAAm), polyvinyl alcohol (PVA), and sorbitol (S) increases the viscous modulus by reducing the pre-added sorbitol concentration is developed. This solution achieves a sol-gel transition in-vitro in heart tissue by spontaneously diffusing the sorbitol. After intramyocardial injection, the BAAm/PVA/S with lower initial viscous modulus widely spreads in the myocardium and gelate compared to a viscoelastic alginate (ALG) hydrogel and is retained longer than the BAAm/S solution. Serial echocardiogram analyses prove that injecting the BAAm/PVA/S into the hearts of subacute MI rats significantly increases the fraction shortening and ejection shortening and attenuates the expansion of systolic LV diameter for up to 21 d after injection compared to the saline injection as a control, but the ALG injection does not. In addition, histological evaluation shows that only the BAAm/PVA/S decreases the infarct size and increases the wall thickness 21 d after injection. The BAAm/PVA/S intramyocardial injection is better at restraining systolic ventricular dilatation and cardiac failure in the rat MI model than in the control groups. Our findings highlight an effective injectable hydrogel therapy for MI by optimizing injectability-dependent distribution and retention of injected material. STATEMENT OF SIGNIFICANCE: In-situ gelling material is a promising strategy for intramyocardial hydrogel injection therapy for myocardial infarction (MI). Since the sol-gel transition of reported materials is driven by external stimulation such as temperature, pH, or ultraviolet, their application in vivo remains challenging. In this study, we first reported a synthetic in-situ gelling material (BAAm/PVA/S) whose gelation is stimulated by spontaneously reducing pre-added sorbitol after contacting the heart tissue. The BAAm/PVA/S solution spreads evenly, and is retained for at least 21 d in the heart tissue. Our study demonstrated that intramyocardial injection of the BAAm/PVA/S with more extensive distribution and longer retention had better effects on preventing LV dilation and improving cardiac function after MI than that of viscoelastic ALG and saline solution. We expect that these findings provide fundamental information for the optimum design of injectable biomaterials for treating MI.


Assuntos
Alprenolol/análogos & derivados , Hidrogel de Polietilenoglicol-Dimetacrilato , Infarto do Miocárdio , Ratos , Animais , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Infarto do Miocárdio/patologia , Sorbitol/farmacologia , Sorbitol/uso terapêutico
6.
Mater Today Bio ; 23: 100847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953756

RESUMO

Although the clinical application of cell-free tissue-engineered vascular grafts (TEVGs) has been proposed, vascular tissue regeneration mechanisms have not been fully clarified. Here, we report that monocyte subpopulations reconstruct vascular-like tissues through integrin signaling. An Arg-Glu-Asp-Val peptide-modified acellular long-bypass graft was used as the TEVG, and tissue regeneration in the graft was evaluated using a cardiopulmonary pump system and porcine transplantation model. In 1 day, the luminal surface of the graft was covered with cells that expressed CD163, CD14, and CD16, which represented the monocyte subpopulation, and they exhibited proliferative and migratory abilities. RNA sequencing showed that captured cells had an immune-related phenotype similar to that of monocytes and strongly expressed cell adhesion-related genes. In vitro angiogenesis assay showed that tube formation of the captured cells occurred via integrin signal activation. After medium- and long-term graft transplantation, the captured cells infiltrated the tunica media layer and constructed vascular with a CD31/CD105-positive layer and an αSMA-positive structure after 3 months. This finding, including multiple early-time observations provides clear evidence that blood-circulating monocytes are directly involved in vascular remodeling.

7.
ACS Appl Bio Mater ; 6(9): 3600-3616, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37616500

RESUMO

Contact lenses are one of the most successful applications of biomaterials. The chemical structure of the polymers used in contact lenses plays an important role in determining the function of contact lenses. Different types of contact lenses have been developed based on the chemical structure of polymers. When designing contact lenses, materials scientists consider factors such as mechanical properties, processing properties, optical properties, histocompatibility, and antifouling properties, to ensure long-term wear with minimal discomfort. Advances in contact lens materials have addressed traditional issues such as oxygen permeability and biocompatibility, improving overall comfort, and duration of use. For example, silicone hydrogel contact lenses with high oxygen permeability were developed to extend the duration of use. In addition, controlling the surface properties of contact lenses in direct contact with the cornea tissue through surface polymer modification mimics the surface morphology of corneal tissue while maintaining the essential properties of the contact lens, a significant improvement for long-term use and reuse of contact lenses. This review presents the material science elements required for advanced contact lenses of the future and summarizes the chemical methods for achieving these goals.


Assuntos
Lentes de Contato , Silicones , Hidrogéis , Biomimética , Oxigênio , Polímeros
8.
Colloids Surf B Biointerfaces ; 230: 113525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634287

RESUMO

Microvascular imaging is required to understand tumor angiogenesis development; however, an appropriate whole-body imaging method has not yet been established. Here, we successfully developed a supramolecular magnetic resonance (MR) contrast agent for long-term whole-tissue observation in a single individual. Fluorescein- and Gd-chelate-conjugated polyethylene glycols (PEGs) were synthesized, and their structures were optimized. Spectroscopic and pharmacokinetic analyses suggested that the fluorescein-conjugated linear and 8-arm PEGs with a molecular weight of approximately 10 kDa were suitable to form a supramolecular structure to visualize the microvessel structure and blood circulation. Microvascular formation was evaluated in a glioma cell transplantation model, and neovascularization around the glioma tissue at 5 days was observed, with the contrast agent leaking out into the cancer tissue. In contrast, after 12 days, microvessel structures were formed inside the glioma tissue, but the agents did not leak out. These imaging data for the first time proved that the microvessels formed inside cancer tissues at the early stage are very leaky, but that they form continuous microvessels after 12 days.


Assuntos
Meios de Contraste , Glioma , Humanos , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem , Glioma/diagnóstico por imagem , Fluoresceína , Polietilenoglicóis , Espectroscopia de Ressonância Magnética
9.
Regen Ther ; 24: 324-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649673

RESUMO

Introduction: The regeneration of adipose tissue in patients after breast cancer surgery would be desirable without the use of growth factors or cells to avoid potential recurrence and metastasis. We reported that prolate spheroidal-shaped poly-L-lactic acid (PLLA) mesh implants of approximately 18-mm polar diameter and 7.5-mm greatest equatorial diameter containing collagen sponge (CS) would be replaced by regenerated adipose tissue after implantation, thereby suggesting an innovative method for breast reconstruction. Our study aimed to evaluate the adipose tissue regeneration ability of implant aggregates in a porcine model. Methods: We prepared implant aggregates consisting of thirty PLLA mesh implants containing CS packed in a woven poly (glycolic acid) bag. The implant aggregates were inserted under the mammary glands in the porcine abdomen for a year. Single and double groups were classified by inserting either one or two implant aggregates on each side of the abdomen, respectively. Results: In both groups, the volume of the implant aggregates decreased over time, and the formation of adipose tissue peaked between 6 and 9 months. Histologically, the formation of adipose tissue was confirmed in the area that was in contact with native adipose tissue. Conclusions: Our implant aggregates could induce the autologous adipose tissue after long term implantation in vivo, without the use of any growth factor or cell treatment, presenting a potential novel method of breast reconstruction.

10.
Tissue Eng Part A ; 29(21-22): 569-578, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606914

RESUMO

Skin substitutes have emerged as an alternative to autografts for the treatment of skin defects. Among them, scaffold-based dermal substitutes have been extensively studied; however, they have certain limitations, such as delayed vascularization, limited elasticity, and the inability to achieve permanent engraftment. Self-assembled, cell-based dermal substitutes are a promising alternative that may overcome these shortcomings but have not yet been developed. In this study, we successfully developed a cell-based dermal substitute (cultured dermis) through the long-term culture of human dermal fibroblasts using the net-mold method, which enables three-dimensional cell culture without the use of a scaffold. Spheroids prepared from human dermal fibroblasts were poured into a net-shaped mold and cultured for 2, 4, or 6 months. The dry weight, tensile strength, collagen and glycosaminoglycan levels, and cell proliferation capacity were assessed and compared among the 2-, 4-, and 6-month culture periods. We found that collagen and glycosaminoglycan levels decreased over time, while the dry weight remained unchanged. Tensile strength increased at 4 months, suggesting that remodeling had progressed. In addition, the cell proliferation capacity was maintained, even after a 6-month culture period. Unexpectedly, the internal part of the cultured dermis became fragile, resulting in the division of the cultured dermis into two collagen-rich tissues, each of which had a thickness of 400 µm and sufficient strength to be sutured during in vivo analysis. The divided 4-month cultured dermis was transplanted to skin defects of immunocompromised mice and its wound healing effects were compared to those of a clinically available collagen-based artificial dermis. The cultured dermis promoted epithelialization and angiogenesis more effectively than the collagen-based artificial dermis. Although further improvements are needed, such as the shortening of the culture period and increasing the size of the cultured dermis, we believe that the cultured dermis presented in this study has the potential to be an innovative material for permanent skin coverage.


Assuntos
Derme , Pele Artificial , Humanos , Camundongos , Animais , Colágeno/farmacologia , Fibroblastos , Glicosaminoglicanos , Células Cultivadas
11.
Regen Ther ; 24: 167-173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37448852

RESUMO

Background: A novel treatment has been developed to reconstruct large skin defects caused by the excision of giant congenital melanocytic nevi. It involves the reimplantation of high-hydrostatic pressurized nevus tissue as a cell-inactivated autologous scaffold for dermal regeneration, followed by the implantation of cultured epithelial autografts on the regenerated dermis. Because this treatment has shown promise in a first-in-human clinical trial which used a prototype pressure machine, a novel pressure device was specifically designed for clinical use. Methods: In a prospective investigator-initiated clinical trial involving three patients, we evaluated the safety and efficacy of the skin regeneration treatment using a pressure device. All three patients underwent surgical excision of the nevus tissue, primary reimplantation of the inactivated nevus tissue, and secondary implantation of cultured epithelial autografts. Results: Engraftment of inactivated nevus tissue and cultured epithelial autografts was successful in all three cases, with over 90% epithelialization at 8 weeks post-surgery. No serious adverse events or device malfunction were observed during the trial. Conclusion: The novel pressure device safely and effectively enabled dermal regeneration using the nevus tissue as an autologous scaffold. This innovative approach offers several advantages, including reduced invasiveness due to minimal sacrifice of normal skin for skin grafting and high curative potential resulting from full-thickness removal of the nevus tissue.

12.
Biomater Adv ; 147: 213324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796198

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) induces graft anastomotic stenosis, resulting in graft failure. Herein, we developed a drug-loaded tissue-adhesive hydrogel as artificial perivascular tissue to suppress VSMCs proliferation. Rapamycin (RPM), an anti-stenosis drug, is selected as the drug model. The hydrogel was composed of poly (3-acrylamidophenylboronic acid-co-acrylamide) (BAAm) and polyvinyl alcohol. Since phenylboronic acid reportedly binds to sialic acid of glycoproteins which is distributed on the tissues, the hydrogel is expected to be adherent to the vascular adventitia. Two hydrogels containing 25 or 50 mg/mL of BAAm (BAVA25 and BAVA50, respectively) were prepared. A decellularized vascular graft with a diameter of <2.5 mm was selected as a graft model. Lap-shear test indicates that both hydrogels adhered to the graft adventitia. In vitro release test indicated that 83 and 73 % of RPM in BAVA25 and BAVA50 hydrogels was released after 24 h, respectively. When VSMCs were cultured with RPM-loaded BAVA hydrogels, their proliferation was suppressed at an earlier stage in RPM-loaded BAVA25 hydrogels compared to RPM-loaded BAVA50 hydrogels. An in vivo preliminary test reveals that the graft coated with RPM-loaded BAVA25 hydrogel shows better graft patency for at least 180 d than the graft coated with RPM-loaded BAVA50 hydrogel or without hydrogel. Our results suggest that RPM-loaded BAVA25 hydrogel with tissue adhesive characteristics has potential to improve decellularized vascular graft patency.


Assuntos
Sirolimo , Enxerto Vascular , Sirolimo/farmacologia , Hidrogéis , Prótese Vascular
13.
Biotechnol J ; 18(2): e2200139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424700

RESUMO

A simple method by which the functional peptide of Gly-Arg-Gly-Asp-Ser (GRGDS) is immobilized on the surface of silk fibroin (SF) films via Gly-Ala-Gly-Ala-Gly-Ser (GAGAGS) sequences is proposed. GAGAGS, a repeating amino acid sequence in the crystal region of Bombyx mori SF, performs a key role in interacting with and immobilizing SF molecules. Immobilization by this proposed method involves no chemical reaction, thereby preserving the original properties of the SF molecule. The density of GRGDS peptides existing on SF film was found to be higher in the GAGAGS-bound type than in the non-GAGAGS-bound type. Furthermore, results showed that the amount of immobilized (GAGAGS)GRGDS peptide increased as the ß-sheet crystallization was promoted in the SF film. Fibroblasts, which adhered to the surface of the SF film, showed more extensibility because of the (GAGAGS)GRGDS immobilization, which suggests that the cell adhesion activity of RGD is functioning effectively.


Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/química , Peptídeos/química , Oligopeptídeos , Seda/química
15.
Transplant Proc ; 54(7): 1998-2007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36041932

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are beginning to be proven as immunosuppressant in the field of organ transplantation. However, the effects of MSC origin (donor or recipient) on immunosuppression are not clear. Hence, we investigated the effects of recipient and donor adipose-derived MSCs (ADMSCs) on immunosuppression in a rat lung transplantation model. METHODS: Subjects were divided into no treatment, tacrolimus administration, recipient ADMSC administration, donor ADMSC administration, and mixed donor and recipient ADMSC administration groups. ADMSC-administered groups were also treated with tacrolimus. Histologic study, immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay, and polymerase chain reaction were used for various analyses. RESULTS: Fluorescently labeled ADMSCs were predominant in the grafted donor lung, but not in the recipient lung, on day 5. On day 7, the pathologic rejection grades of the grafted donor lung were significantly lower in the ADMSC-administered groups (P < .05) and did not differ among these groups. Although serum hepatocyte growth factor and vascular endothelial growth factor levels did not differ among the groups, interleukin 10 level was slightly higher in the ADMSC-administered groups. The numbers of infiltrating regulatory T cells in the grafted lung were significantly higher in the ADMSC-administered groups (P < .05) but did not differ with cell origin. Transcriptional analysis suggested interleukin 6 suppression to be the main overlapping immunosuppressive mechanism, regardless of origin. Therefore, a donor or recipient origin may not influence the immunosuppressive efficacy of ADMSCs in our rat lung transplantation model. CONCLUSIONS: Collectively, the results indicate that allogenic ADMSCs, regardless of their origin, may exert similar immunosuppressive effects in clinical organ transplantation.


Assuntos
Transplante de Pulmão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Tacrolimo/farmacologia , Tecido Adiposo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Imunossupressores/farmacologia
16.
Colloids Surf B Biointerfaces ; 216: 112576, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636324

RESUMO

Expanded polytetrafluoroethylene (ePTFE) is widely used in clinical applications, such as in the manufacture of blood-contacting implantable devices, owing to its flexibility, biostability, and non-adhesiveness. Modification with peptides is an effective strategy to further improve the ePTFE function. However, the chemical stability of PTFE makes it difficult to modify with peptides. In this study, we reported a simple method for the dense and stable coating of biofunctional peptides on the ePTFE surface through the anchor sequence, Tyr-Lys-Tyr-Lys-Tyr-Lys (YK3). A peptide (YK3-LDV) incorporating the YK3 anchor and a ligand sequence for α4ß1 integrin, Leu-Asp-Val (LDV), was successfully coated on ePTFE grafts through one-pot oxidation. The peptide layer constructed via YK3-LDV coating on ePTFE was stable and resistant to extensive washing by aqueous solutions of highly concentrated salts and surfactants. YK3-LDV coating promoted the in vitro adhesion of endothelial cells to ePTFE. Furthermore, YK3-LDV coating accelerated the in vivo formation of neointima-like tissue in a rat model with an ePTFE patch implanted into the carotid artery.


Assuntos
Células Endoteliais , Politetrafluoretileno , Animais , Prótese Vascular , Adesão Celular , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Oligopeptídeos , Peptídeos/metabolismo , Peptídeos/farmacologia , Politetrafluoretileno/farmacologia , Ratos , Tirosina/metabolismo
17.
J Artif Organs ; 25(3): 245-253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35235081

RESUMO

Our bioabsorbable poly-L-lactic acid (PLLA) mesh implants containing collagen sponge are replaced with adipose tissue after implantation, and this is an innovative method for breast reconstruction. In this preliminary study, we investigated the formation of adipose tissue and evaluated the process via multimodal images in a porcine model using an implant aggregate to generate the larger adipose tissue. The implant aggregate consists of PLLA mesh implants containing collagen sponge and a poly-glycolic acid woven bag covering them. We inserted the implant aggregates under the porcine mammary glands. Magnetic resonance imaging (MRI), ultrasonography (USG), and 3-dimensional (3D) surface imaging and histological evaluations were performed to evaluate the formation of adipose tissue over time. The volume of the implant aggregate and the formed adipose tissue inside the implant aggregate could be evaluated over time via MRI. The space within the implant aggregate was not confirmed on USG due to the acoustic shadow of the PLLA threads. The change in volume was not confirmed precisely using 3D surface imaging. Histologically, the newly formed adipose tissue was confirmed on the skin side of the implant aggregate. This implant aggregate has the ability to regenerate adipose tissue, and MRI is an appropriate method for the evaluation of the volume of the implant aggregation and the formation of adipose tissue.


Assuntos
Implantes Absorvíveis , Adipogenia , Tecido Adiposo , Animais , Colágeno , Imageamento por Ressonância Magnética , Suínos
18.
J Mater Chem B ; 10(14): 2637-2648, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35023529

RESUMO

Polymer particles with precise diameters have been used as building blocks for fabricating well-defined and nanostructured materials. Polymer particles as building blocks for medical applications require both easily spatiotemporal manipulation and good biocompatibility. In this study, we designed zwitterionic polymer particles with photodimerizable groups on their surfaces and used ultraviolet (UV) light irradiation to photo-assemble them in aqueous media. After synthesizing zwitterionic polymer particles with diameters ranging from 100-200 nm via soap-free emulsion polymerization, maleimide moieties as photodimerizable groups were introduced onto the particle surfaces. UV light irradiation to an aqueous dispersion of zwitterionic polymer particles with photodimerizable groups induced their photo-assembling because interparticle bonding forms by photodimerization of the photodimerizable groups on the particle surfaces. The zwitterionic surface of their particle-assembled films effectively suppressed protein adsorption, cell adhesion, and platelet adhesion. The photoresponsive behaviour and bioinert surface of the zwitterionic polymer particles with photodimerizable groups indicate that they have several potential applications as bioinert building blocks for designing well-defined and nanostructured biomaterials used in biosensors, bioseparation and cell culture, and for modifying and repairing biomaterial surfaces in situ.


Assuntos
Adesividade Plaquetária , Polímeros , Adsorção , Adesão Celular , Polimerização , Polímeros/farmacologia
19.
J Biomed Mater Res A ; 110(3): 547-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34486215

RESUMO

Recently, a decellularized microvascular graft (inner diameter: 0.6 mm) modified with the integrin α4ß1 ligand, REDV, was developed to provide an alternative to autologous-vein grafting in reconstructive microsurgery, showing good early-stage patency under arterial flow in rats. This consecutive study evaluated its potential utility not only as an arterial substitute, but also as a venous substitute, using a rat-tail replantation model. Graft remodeling depending on hemodynamic status was also investigated. ACI rat tail arteries were decellularized via ultra-high-hydrostatic pressure treatment and modified with REDV to induce antithrombogenic interfaces and promote endothelialization after implantation. Grafts were implanted into the tail artery and vein to re-establish blood circulation in amputated Lewis rat tails (n = 12). The primary endpoint was the survival of replants. Secondary endpoints were graft patency, remodeling, and regeneration for 6 months. In all but three cases with technical errors or postoperative self-mutilation, tails survived without any evidence of ischemia or congestion. Six-month Kaplan-Meier patency was 100% for tail-artery implanted grafts and 62% for tail-vein implanted grafts. At 6 months, the neo-tunica media (thickness: 95.0 µm in tail-artery implanted grafts, 9.3 µm in tail-vein implanted grafts) was regenerated inside the neo-intima. In conclusion, the microvascular grafts functioned well both as arterial and venous paths of replanted-rat tails, with different remodeling under arterial and venous conditions.


Assuntos
Artérias , Túnica Média , Animais , Artérias/transplante , Ratos , Ratos Endogâmicos ACI , Ratos Endogâmicos Lew , Grau de Desobstrução Vascular
20.
J Mater Chem B ; 10(14): 2544-2550, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787632

RESUMO

Decellularized tissue is expected to be utilized as a regenerative scaffold. However, the migration of host cells into the central region of the decellularized tissues is minimal because the tissues are mainly formed with dense collagen and elastin fibers. This results in insufficient tissue regeneration. Herein, it is demonstrated that host cell migration can be accelerated by using decellularized tissue with a patterned pore structure. Patterned pores with inner diameters of 24.5 ± 0.4 µm were fabricated at 100, 250, and 500 µm intervals in the decellularized vascular grafts via laser ablation. The grafts were transplanted into rat subcutaneous tissue for 1, 2, and 4 weeks. All the microporous grafts underwent faster recellularization with macrophages and fibroblast cells than the non-porous control tissue. In the case of non-porous tissue, the cells infiltrated approximately 50% of the area four weeks after transplantation. However, almost the entire area was occupied by the cells after two weeks when the micropores were aligned at a distance of less than 250 µm. These results suggest that host cell infiltration depends on the micropore interval, and a distance shorter than 250 µm can accelerate cell migration into decellularized tissues.


Assuntos
Transplantes , Enxerto Vascular , Animais , Prótese Vascular , Colágeno , Ratos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA