Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 604: 22-29, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35279442

RESUMO

OBJECTIVE: Cluster of differentiation 81 (CD81) is a tetraspanin membrane protein consisting of 4 transmembrane domains and 2 outer membrane loops. CD81 inhibition is a potential treatment for rheumatoid arthritis (RA). Here, we investigated the therapeutic effects of the cytoplasmic RNA vector expressing anti-CD81 antibodies (the anti-CD81 vector) on the ankle joint synovium in collagen-induced arthritis (CIA) rats. METHODS: Body weight, paw volume, and clinical scores were measured on days 0, 7, and 10 and daily thereafter. On day 28, the ankle joints of the rats were removed and stained with haematoxylin, eosin, and Safranin O. Arthritic changes such as inflammatory cell infiltration, synovial proliferation, articular cartilage destruction, and bone erosion were evaluated by histological scoring. RESULTS: Symptom onset was delayed in the right lower limbs of the rats administered the cytoplasmic RNA vector (CIA + anti-CD81) compared with that in the control group (CIA + control). The CIA + anti-CD81 rats were heavier than the CIA + control rats. The paw volume and clinical scores were significantly lower in the CIA + anti-CD81 than in the CIA + control. The histological scores indicated significantly milder manifestations of RA in the CIA + anti-CD81 than in the CIA + control. CONCLUSIONS: Administration of the cytoplasmic RNA vector expressing anti-CD81 antibodies suppressed arthritis and joint destruction in CIA rats. Our findings suggest that the cytoplasmic RNA vector can be used to treat RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Cartilagem Articular , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/patologia , Cartilagem Articular/metabolismo , RNA/metabolismo , Ratos , Membrana Sinovial/patologia
2.
Microbiol Immunol ; 65(8): 333-341, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991001

RESUMO

Fibronectin (Fn) is an approximately 450 kDa glycoprotein that consists of 12 type I, 2 type II, and 15-17 type III modules. Fibrillation of Fn is important for tissue reconstitution and wound healing. We previously reported that Clostridium perfringens produces several Fn-binding proteins (Fbps), two of which, FbpA and FbpB, bind to III1 -C (a fragment of Fn derived from the carboxyl-terminal two-thirds of the first-type III module). Dermatopontin (DPT), a 22 kDa noncollagenous extracellular matrix protein, accelerates normal collagen fibrillation and induces Fn fibrillation. DPT interacts with Fn-type III12-14 (III12-14 ), leading to a change in Fn conformation and promoting Fn fibrillation. Here, we investigated the effects of FbpA and FbpB on the binding of Fn and the III12-14 fragment to DPT and on the DPT-induced Fn fibrillation. Both recombinant FbpA (rFbpA) and recombinant FbpB (rFbpB) significantly inhibited Fn binding to DPT and recombinant III12-14 (rIII12-14 ) binding, and inhibited DPT-induced Fn fibrillation. Furthermore, it was found that both rFbpA and rFbpB significantly bound to coated DPT in an enzyme-linked avidin-biotin complex system, whereas rIII12-14 did not bind to either coated rFbpA or rFbpB. In conclusion, both FbpA and FbpB inhibited DPT-induced Fn fibrillation via their interaction with DPT. Both FbpA and FbpB released from lysed C. perfringens cells in wounds and/or infected tissue may prevent Fn fibrillation and delay the wound healing process, subsequently exacerbating infection.


Assuntos
Clostridium perfringens , Proteínas de Transporte , Clostridium perfringens/metabolismo , Colágeno , Fibronectinas/metabolismo , Humanos , Ligação Proteica
3.
Parasitol Int ; 68(1): 87-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30342119

RESUMO

Proteins coating Plasmodium merozoite surface and secreted from its apical organelles are considered as promising vaccine candidates for blood-stage malaria. The rhoptry neck protein 12 of Plasmodium falciparum (PfRON12) was recently reported as a protein specifically expressed in schizonts and localized to the rhoptry neck of merozoites. Here, we assessed its potential as a vaccine candidate. We expressed a recombinant PfRON12 protein by a wheat germ cell-free system to obtain anti-PfRON12 antibody. Immunoblot analysis of schizont lysates detected a single band at approximately 40 kDa under reducing conditions, consistent with the predicted molecular weight. Additionally, anti-PfRON12 antibody recognized a single band around 80 kDa under non-reducing conditions, suggesting native PfRON12 forms a disulfide-bond-mediated multimer. Immunofluorescence assay and immunoelectron microscopy revealed that PfRON12 localized to the rhoptry neck of merozoites in schizonts and to the surface of free merozoites. The biological activity of anti-PfRON12 antibody was tested by in vitro growth inhibition assay (GIA), and the rabbit antibodies significantly inhibited merozoite invasion of erythrocytes. We then investigated whether PfRON12 is immunogenic in P. falciparum-infected individuals. The sera from P. falciparum infected individuals in Thailand and Mali reacted with the recombinant PfRON12. Furthermore, human anti-PfRON12 antibodies affinity-purified from Malian serum samples inhibited merozoite invasion of erythrocytes in vitro. Moreover, pfron12 is highly conserved with only 4 non-synonymous mutations in the coding sequence from approximately 200 isolates deposited in PlasmoDB. These results suggest that PfRON12 might be a potential blood-stage vaccine candidate antigen against P. falciparum.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Infecções Assintomáticas/epidemiologia , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Imunofluorescência , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Mali/epidemiologia , Merozoítos/imunologia , Coelhos , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Esquizontes/química , Tailândia/epidemiologia
4.
Anaerobe ; 51: 124-130, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29753109

RESUMO

During research to identify fibronectin (Fn)-binding proteins (Fbps) on the surface of Clostridium perfringens cells, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a candidate Fbp. GAPDH is a glycolytic enzyme found in a wide range of prokaryotes and eukaryotes. The Fn-binding activity of recombinant C. perfringens GAPDH (rGAPDH) was investigated using both ligand blotting analysis and enzyme-linked immunosorbent assay (ELISA). rGAPDH strongly bound plasminogen but not laminin or gelatin. Although GAPDH has no signal sequence, it is expressed on the cell surface of many microorganisms. The presence of GAPDH on the surface of C. perfringens cells was analyzed using ELISA and flow cytometry analyses; purified rGAPDH bound to the surface of C. perfringens cells. As autolysin is reportedly involved in the binding of GAPDH to the cell surface, we evaluated the interaction between rGAPDH and the C. perfringens autolysin Acp by both ELISA and ligand blotting assay. These assays revealed that rGAPDH binds to the catalytic domain of Acp but not the cell wall binding domains. These results suggest that autolysin mediates expression of GAPDH on the surface of C. perfringens cells and indicate a possible moonlighting function for GAPDH in binding both Fn and plasminogen.


Assuntos
Clostridium perfringens/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismo , Far-Western Blotting , Proteínas de Transporte/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Plasminogênio/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo
5.
Anaerobe ; 34: 174-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25433150

RESUMO

The extracellular matrix protein fibronectin (Fn) is known to bind to the surface of Clostridium perfringens cells. Fn is a disulfide-linked homodimer protein, with each Fn polypeptide consisting of three types of repeating modules: 12 type I, 2 type II, and 15-17 type III modules. To determine the epitope on Fn recognized by C. perfringens cells, anti-Fn monoclonal antibodies (mAbs) and various Fn fragments (III2-10, rIII2-4, rIII5-7, rIII8, rIII9, rIII10) were employed. Although two C. perfringens-derived Fn-binding proteins, FbpA and FbpB, have been reported, they appear not to be the bacterium's surface Fn receptor. Moreover, both FbpA and FbpB were found to bind to C. perfringens cells. To avoid confusion, a mutant C. perfringens lacking both the fbpA and fbpB genes (MW5) was prepared using an in-frame deletion system. MW5 cells bound Fn on their surface, suggesting the presence of a putative Fn receptor(s) on C. perfringens cells. Of several anti-Fn mAbs, both HB39 and MO inhibited the binding of Fn to MW5 cells. HB39 reacted strongly with III2-10 and rIII9, and weakly with rIII2-4, rIII10 and rIII5-7 in Western blotting analysis. Binding of HB39 to Fn was inhibited in the presence of either rIII9 or rIII10, but not in the presence of rIII2-4, rIII5-7, or rIII8. Binding of Fn to MW5 cells was strongly inhibited by both III2-10 and rIII9, marginally inhibited by rIII2-4, but not affected by rIII5-7, rIII8, or rIII10. Significant binding of MW5 cells to immobilized rIII9 and rIII10 as well as immobilized III2-10 was observed. The region of Fn recognized by C. perfringens was thus mapped to the region encompassed by III9 and III10.


Assuntos
Aderência Bacteriana , Clostridium perfringens/fisiologia , Fibronectinas/metabolismo , Sítios de Ligação , Ligação Proteica
6.
Anaerobe ; 25: 67-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24239649

RESUMO

The adhesive properties of Clostridium perfringens to collagens, gelatin, fibronectin (Fn), Fn-prebound collagens, and Fn-prebound gelatin were investigated. C. perfringens could bind to Fn-prebound collagen type II, type III, and gelatin, but not to gelatin or collagens except for collagen type I directly. Recombinant Fn-binding proteins of C. perfringens, rFbpA and rFbpB, were used to examine Fn-mediated bacterial adherence to collagen type I. In the presence of rFbps, C. perfringens adherence to Fn-prebound collagen type I was inhibited in a dose-dependent manner. Fn was not released from the coated collagen type I by the presence of rFbps, and rFbps did not bind to collagen type I. Thus, the inhibition of C. perfringens binding to Fn-prebound collagen type I by rFbps could not be explained by the removal of Fn from collagen or by the competitive binding of rFbps to collagen. Instead, both rFbps were found to bind to C. perfringens. These results suggest the possibility that rFbps may bind to the putative Fn receptor expressed on C. perfringens and competitively inhibit Fn binding to C. perfringens.


Assuntos
Aderência Bacteriana , Clostridium perfringens/fisiologia , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Gelatina/metabolismo , Humanos , Ligação Proteica
7.
Infect Immun ; 81(11): 4290-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002067

RESUMO

Erythrocyte invasion by merozoites is an obligatory stage of Plasmodium infection and is essential to disease progression. Proteins in the apical organelles of merozoites mediate the invasion of erythrocytes and are potential malaria vaccine candidates. Rhoptry-associated, leucine zipper-like protein 1 (RALP1) of Plasmodium falciparum was previously found to be specifically expressed in schizont stages and localized to the rhoptries of merozoites by immunofluorescence assay (IFA). Also, RALP1 has been refractory to gene knockout attempts, suggesting that it is essential for blood-stage parasite survival. These characteristics suggest that RALP1 can be a potential blood-stage vaccine candidate antigen, and here we assessed its potential in this regard. Antibodies were raised against recombinant RALP1 proteins synthesized by using the wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that RALP1 is a rhoptry neck protein of merozoites. Moreover, our IFA data showed that RALP1 translocates from the rhoptry neck to the moving junction during merozoite invasion. Growth and invasion inhibition assays revealed that anti-RALP1 antibodies inhibit the invasion of erythrocytes by merozoites. The findings that RALP1 possesses an erythrocyte-binding epitope in the C-terminal region and that anti-RALP1 antibodies disrupt tight-junction formation, are evidence that RALP1 plays an important role during merozoite invasion of erythrocytes. In addition, human sera collected from areas in Thailand and Mali where malaria is endemic recognized this protein. Overall, our findings indicate that RALP1 is a rhoptry neck erythrocyte-binding protein and that it qualifies as a potential blood-stage vaccine candidate.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Imunofluorescência , Humanos , Vacinas Antimaláricas/genética , Mali , Microscopia Imunoeletrônica , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Soro/imunologia , Tailândia
8.
PLoS One ; 7(1): e30251, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253925

RESUMO

The pathology of malaria is a consequence of the parasitaemia which develops through the cyclical asexual replication of parasites in a patient's red blood cells. Multiple parasite ligand-erythrocyte receptor interactions must occur for successful Plasmodium invasion of the human red cell. Two major malaria ligand families have been implicated in these variable ligand-receptor interactions used by Plasmodium falciparum to invade human red cells: the micronemal proteins from the Erythrocyte Binding Ligands (EBL) family and the rhoptry proteins from the Reticulocyte binding Homolog (PfRH) family. Ligands from the EBL family largely govern the sialic acid (SA) dependent pathways of invasion and the RH family ligands (except for RH1) mediate SA independent invasion. In an attempt to dissect out the invasion inhibitory effects of antibodies against ligands from both pathways, we have used EBA-175 and RH5 as model members of each pathway. Mice were immunized with either region II of EBA-175 produced in Pichia pastoris or full-length RH5 produced by the wheat germ cell-free system, or a combination of the two antigens to look for synergistic inhibitory effects of the induced antibodies. Sera obtained from these immunizations were tested for native antigen recognition and for efficacy in invasion inhibition assays. Results obtained show promise for the potential use of such hybrid vaccines to induce antibodies that can block multiple parasite ligand-red cell receptor interactions and thus inhibit parasite invasion.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Plasmodium falciparum/fisiologia , Transdução de Sinais , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Camundongos , Modelos Biológicos , Neuraminidase/farmacologia , Parasitos/efeitos dos fármacos , Parasitos/imunologia , Parasitos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Conformação Proteica , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
9.
Infect Immun ; 79(11): 4523-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896773

RESUMO

One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários , Sistema Livre de Células , Eritrócitos/citologia , Eritrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Neuraminidase , Plasmodium falciparum/genética , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/genética
10.
Microbiol Immunol ; 54(4): 221-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20377750

RESUMO

The Clostridium perfringens strain 13 genome contains two genes (fbpA, fbpB) that encode putative Fbp. Both rFbpA and rFbpB were purified and their reactivity with human serum Fn was analyzed. To determine the region of the Fn molecule recognized by rFbp, a plate binding assay using N-terminal 70-kDa peptide, III1-C peptide, and 110-kDa peptide containing III2-10 of Fn was performed. Both rFbp bound to the III1-C peptide of Fn but not to the other peptides. However, the III1-C fragment of Fn is known to be cryptic in serum Fn. Then, rFbp-BP from Fn were purified by rFbp-affinity chromatography. The yield of purified proteins was approximately 1% of the applied Fn on a protein basis. Western blotting analysis of the rFbp-BP, using four different anti-Fn monoclonal antibodies, revealed that the rFbp-BP carried partial Fn antigenicity. Bindings of rFbp to rFbp-BP were inhibited by the presence of the III1-C peptide, suggesting that rFbp-BP express the III1-C fragment. The binding of Fn to III1-C was inhibited by the presence of either rFbpA or rFbpB. This result that suggests C. perfringens Fbps may inhibit the formation of Fn-matrix in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Fibronectinas , Fragmentos de Peptídeos/química , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Clostridium perfringens/genética , Epitopos/química , Epitopos/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Anaerobe ; 15(4): 155-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19292998

RESUMO

Clostridium perfringens is a Gram-positive anaerobic pathogen that causes gas gangrene and food poisoning in humans and animals. Genomic analysis of C. perfringens strain 13 revealed that this bacterium contains two genes (CPE0737 and CPE1847) that encode putative fibronectin (Fn)-binding proteins (Fbps). These genes, named fbpA and fbpB, were found to be constitutively expressed in all three strains (13, NCTC8237, CPN50) of C. perfringens, isolated from gas gangrene of human, that were tested. Both fbpA and fbpB were cloned and His-tagged, recombinant FbpA (rFbpA) and recombinant FbpB (rFbpB) were purified by Ni(2+)-Sepharose column chromatography from transformed Escherichia coli. These recombinant Fbps were shown to bind to Fn, purified from human serum, in a ligand blotting assay. Additionally, Fn bound to these rFbps in a dose-dependent manner in an enzyme-linked immunosorbent assay. Furthermore, it was found that pre-incubation of Fn with either rFbpA or rFbpB inhibited the binding of Fn to C. perfringens cells.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Fibronectinas/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Clostridium perfringens/genética , Clostridium perfringens/crescimento & desenvolvimento , Clostridium perfringens/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Gangrena Gasosa/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA