Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473751

RESUMO

The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Diafragma , Camundongos Endogâmicos mdx , Músculo Esquelético , Transplante de Células
2.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190056

RESUMO

Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Distribuição Tecidual , Células-Tronco Pluripotentes/metabolismo , Músculo Esquelético/metabolismo , Primatas , Pentosiltransferases/metabolismo
3.
Cells ; 13(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201280

RESUMO

In vitro-generated pluripotent stem cell (PSC)-derived Pax3-induced (iPax3) myogenic progenitors display an embryonic transcriptional signature, but upon engraftment, the profile of re-isolated iPax3 donor-derived satellite cells changes toward similarity with postnatal satellite cells, suggesting that engrafted PSC-derived myogenic cells remodel their transcriptional signature upon interaction within the adult muscle environment. Here, we show that engrafted myogenic progenitors also remodel their metabolic state. Assessment of oxygen consumption revealed that exposure to the adult muscle environment promotes overt changes in mitochondrial bioenergetics, as shown by the substantial suppression of energy requirements in re-isolated iPax3 donor-derived satellite cells compared to their in vitro-generated progenitors. Mass spectrometry-based metabolomic profiling further confirmed the relationship of engrafted iPax3 donor-derived cells to adult satellite cells. The fact that in vitro-generated myogenic progenitors remodel their bioenergetic signature upon in vivo exposure to the adult muscle environment may have important implications for therapeutic applications.


Assuntos
Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético , Adulto , Humanos , Metabolômica , Consumo de Oxigênio , Músculos
4.
Biomed Res Int ; 2020: 6404230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685512

RESUMO

Lysosomes and acidic compartments are involved in breaking down of macromolecules, membrane recycling, and regulation of signaling pathways. Here, we analyzed the role of acidic compartments during muscle differentiation and the involvement of the Wnt/beta-catenin pathway in lysosomal function during myogenesis. Acridine orange was used to localize and quantify acidic cellular compartments in primary cultures of embryonic muscle cells from Gallus gallus. Our results show an increase in acidic compartment size and area, as well as changes in their positioning during the initial steps of myogenesis. The inhibition of lysosomal function by either the chloroquine Lys05 or the downregulation of LAMP-2 with siRNA impaired chick myogenesis, by inhibiting myoblast fusion. Two activators of the Wnt/beta-catenin pathway, BIO and Wnt3a, were able to rescue the inhibitory effects of Lys05 in myogenesis. These results suggest a new role for the Wnt/beta-catenin pathway in the regulation of acidic compartment size, positioning, and function in muscle cells.


Assuntos
Proteínas Aviárias/metabolismo , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Embrião de Galinha
5.
Am J Physiol Cell Physiol ; 313(1): C11-C26, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381519

RESUMO

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


Assuntos
Aldeído Oxirredutases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Animais , Diferenciação Celular , Fusão Celular , Embrião de Galinha , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo , S-Nitrosotióis/farmacologia , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Tionucleotídeos/farmacologia , Triazenos/farmacologia
6.
Antioxid Redox Signal ; 23(13): 1017-34, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421519

RESUMO

AIMS: The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. RESULTS: Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca(2+) sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 µM GSNO also decreased Ca(2+) sensitivity of contraction and 10 µM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (≥ 100 µM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca(2+) sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 µM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. INNOVATION AND CONCLUSIONS: Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations.


Assuntos
Sinalização do Cálcio , Cisteína/análogos & derivados , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , S-Nitrosotióis/metabolismo , Animais , ATPase de Ca(2+) e Mg(2+)/metabolismo , Células Cultivadas , Cisteína/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Contração Miocárdica , Óxido Nítrico/metabolismo , Estresse Oxidativo , Sarcômeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA