Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 984-991, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759597

RESUMO

Aqueous zinc-ion batteries are emerging as powerful candidates for large-scale energy storage, due to their inherent high safety and high theoretical capacity. However, the inevitable hydrogen evolution and side effects of the deposition process limit their lifespan, which requires rational engineering of the interface between anode and aqueous electrolyte. In this paper, an anionic surfactant as electrolyte additive, sodium dodecyl sulfonate (SDS), is introduced to deliver highly reversible zinc metal batteries. Unlike traditional surfactants, the solvation structure is not affected by SDS, which tends to adsorb on the (002) crystal plane of Zn with the purpose of effectively limiting the water molecules adsorption. Attributed to the natural hydrophobic part of SDS, a dynamic electrostatic shielding layer and a unique hydrophobic interface are constructed on the anode. Assisted by the above merits, the adverse surface corrosion, hydrogen evolution and dendrite growth are significantly inhibited without the sacrifice in the deposition kinetics of Zn ions. As a result, the Zn||Zn symmetric batteries demonstrate an increased cycle life of 2000 h (1 mA cm-2, 1 mA h cm-2) with the presence of SDS additive. Such strategy provides a new avenue for the developing advanced electrolytes to be applied in aqueous energy storage systems.

2.
Chemistry ; 30(29): e202400567, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501983

RESUMO

The potential for scale-up application has been acknowledged by researchers for rechargeable aqueous zinc-ion batteries (ZIBs). Nonetheless, the progress of the development is significantly impeded due to the instability of the interface between the zinc anode and electrolyte. Herein, efficient and environmentally benign valine (Val) were introduced as aqueous electrolyte additive to stabilize the electrode/electrolyte interface (EEI) via functional groups in additive molecules, thus achieving reversible dendrite-free zinc anode. The amino groups present in Val molecules have a strong ability to adsorb on the surface of zinc metal, enabling the construction of anchored molecular layer on the surface of zinc anodes. The strongly polar carboxyl groups in Val molecules can act as ion-transport pumps to capture zinc ions in the electric double layer (EDL) through coordination chemistry. Therefore, this reconstructed EEI could modulate the zinc ion flux and simultaneously suppress side reactions and dendritic growth of Zn. Consequently, a long stable cycling up to 1400 h at a high current density of 20 mA cm-2 is achieved. Additionally, Zn//V2O5 full cell with Val additive exhibit enhanced cyclability, retaining 77 % capacity after 3000 cycles, displaying significant potential in promoting the commercialization of ZIBs.

3.
J Colloid Interface Sci ; 664: 539-548, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484522

RESUMO

The issues of dendrite growth, hydrogen evolution reaction, and zinc anode corrosion have significantly hindered the widespread implementation of aqueous zinc-ion batteries (AZIBs). Herein, trace amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) additive is introduced into AZIBs to protect the zinc metal anode. Trace amounts of the TEMPO additive with nitroxyl radical can provide fast Zn2+ transport and anode protection ability by forming an adsorbed molecular layer via Zn-O bond. This interface not only provides strong interfacial compatibility and promotes dynamic transport of Zn2+, but also induces deposition of Zn2+ along Zn (002) plane. Additionally, the molecular protective layer significantly inhibits hydrogen evolution reaction (HER) and corrosion. The Zn anodes achieve high Coulombic efficiency of up to 99.75 % and long-term plating/stripping of more than 1400 h at 1 mA cm-2 and 0.5 mAh cm-2. The Zn//Zn symmetric cell can operate continuously for 2500 h at a current density of 1 mA cm-2 and 1 mAh cm-2, and it can still last for nearly 1400 h even when the current density is increased to 5 mA cm-2. Furthermore, the Zn//V2O5 full cell using TEMPO/ZnSO4 electrolyte effectively maintains a maximum capacity retention rate of 53.4 % even after 1500 cycles at 5 A/g. This innovative strategy introduces trace additive with free radicals into the electrolyte, which may help to achieve large-scale, ultra-long-life, and low-cost AZIBs.

4.
Small Methods ; : e2300758, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584206

RESUMO

Aqueous aluminum metal batteries (AMBs) have attracted numerous attention because of the abundant reserves, low cost, high theoretical capacity, and high safety. Nevertheless, the poor thermodynamics stability of metallic Al anode in aqueous solution, which is caused by the self-corrosion, surface passivation, or hydrogen evolution reaction, dramatically limits the electrochemical performance and hampers the further development of AMBs. In this comprehensive review, the key scientific challenges of Al anode/electrolyte interface (AEI) are highlighted. A systematic overview is also provided about the recent progress on the rational interface engineering principles toward a relatively stable AEI. Finally, suggestions and perspectives for future research are offered on the optimization of Al anode and aqueous electrolytes to enable a stable and durable AEI, which may pave the way for developing high-performance AMBs.

5.
J Colloid Interface Sci ; 634: 195-208, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535158

RESUMO

The design of multifunctional photocatalyst with strong redox performance is the key to achieve sustainable utilization of solar energy. In this study, an elegant S-scheme heterojunction photocatalyst was constructed between metal-free graphitic carbon nitride (g-C3N4) and noble-metal-free tungsten oxide (W18O49). As-established S-scheme heterojunction photocatalyst enabled multifunctional photocatalysis behavior, including hydrogen production, degradation (Rhodamine B) and bactericidal (Escherichia coli) properties, which represented extraordinary sustainability. Finite-difference time-domain (FDTD) simulations manifested that the integration of double-layer hollow g-C3N4 nanotubes with W18O49 nanowires could expand the light harvesting ability. Demonstrated by density functional theory (DFT) calculations and electron spin resonance (ESR) measurements, the S-scheme heterojunction not only promoted the separation of carriers, but also improved the redox ability of the catalyst. This work provides a theoretical basis for enhancing the photocatalytic performances and broadening the application field of photocatalysis.


Assuntos
Antibacterianos , Óxidos , Escherichia coli
6.
Small ; 18(43): e2107773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934834

RESUMO

The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety. Extensive efforts are devoted to developing AAIBs in the last few years. Yet, it is still challenging to achieve stable electrodes with good electrochemical performance and electrolytes without side reactions. This review summarizes the recent progress in the exploration of anode and cathode materials and the selection of electrolytes of AAIBs. Lastly, the main challenges and future research outlook of high-performance AAIBs are also presented.

7.
J Am Chem Soc ; 144(25): 11444-11455, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723429

RESUMO

Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.

8.
ACS Nano ; 16(5): 8213-8222, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35362943

RESUMO

Synthesizing urea from nitrate and carbon dioxide through an electrocatalysis approach under ambient conditions is extraordinarily sustainable. However, this approach still lacks electrocatalysts developed with high catalytic efficiencies, which is a key challenge. Here, we report the high-efficiency electrocatalytic synthesis of urea using indium oxyhydroxide with oxygen vacancy defects, which enables selective C-N coupling toward standout electrocatalytic urea synthesis activity. Analysis by operando synchrotron radiation-Fourier transform infrared spectroscopy showcases that *CO2NH2 protonation is the potential-determining step for the overall urea formation process. As such, defect engineering is employed to lower the energy barrier for the protonation of the *CO2NH2 intermediate to accelerate urea synthesis. Consequently, the defect-engineered catalyst delivers a high Faradaic efficiency of 51.0%. In conjunction with an in-depth study on the catalytic mechanism, this design strategy may facilitate the exploration of advanced catalysts for electrochemical urea synthesis and other sustainable applications.

9.
Adv Mater ; 34(25): e2101474, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34490683

RESUMO

Lithium-ion batteries (LIBs) are vital energy-storage devices in modern society. However, the performance and cost are still not satisfactory in terms of energy density, power density, cycle life, safety, etc. To further improve the performance of batteries, traditional "trial-and-error" processes require a vast number of tedious experiments. Computational chemistry and artificial intelligence (AI) can significantly accelerate the research and development of novel battery systems. Herein, a heterogeneous category of AI technology for predicting and discovering battery materials and estimating the state of the battery system is reviewed. Successful examples, the challenges of deploying AI in real-world scenarios, and an integrated framework are analyzed and outlined. The state-of-the-art research about the applications of ML in the property prediction and battery discovery, including electrolyte and electrode materials, are further summarized. Meanwhile, the prediction of battery states is also provided. Finally, various existing challenges and the framework to tackle the challenges on the further development of machine learning for rechargeable LIBs are proposed.

10.
J Am Chem Soc ; 142(36): 15295-15304, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786747

RESUMO

Aqueous Al-ion batteries (AAIBs) are the subject of great interest due to the inherent safety and high theoretical capacity of aluminum. The high abundancy and easy accessibility of aluminum raw materials further make AAIBs appealing for grid-scale energy storage. However, the passivating oxide film formation and hydrogen side reactions at the aluminum anode as well as limited availability of the cathode lead to low discharge voltage and poor cycling stability. Here, we proposed a new AAIB system consisting of an AlxMnO2 cathode, a zinc substrate-supported Zn-Al alloy anode, and an Al(OTF)3 aqueous electrolyte. Through the in situ electrochemical activation of MnO, the cathode was synthesized to incorporate a two-electron reaction, thus enabling its high theoretical capacity. The anode was realized by a simple deposition process of Al3+ onto Zn foil substrate. The featured alloy interface layer can effectively alleviate the passivation and suppress the dendrite growth, ensuring ultralong-term stable aluminum stripping/plating. The architected cell delivers a record-high discharge voltage plateau near 1.6 V and specific capacity of 460 mAh g-1 for over 80 cycles. This work provides new opportunities for the development of high-performance and low-cost AAIBs for practical applications.

11.
Small ; 16(5): e1906214, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31943803

RESUMO

Developing nanomaterials with synergistic effects of various structural merits is considered to be an effective strategy to improve the sluggish ion kinetics and severe structural degradation of sodium-ion battery (SIB) anodes. Herein, honeycomb-like amorphous Zn2 V2 O7 (ZVO-AH) nanofibers as SIBs anode material with plentiful defective sites, complex cavities, and good mechanical flexibility are reported. The fabrication strategy relies on the expansive and volatile nature of the organic vanadium source, based on a simple electrospinning with subsequent calcination. Originating from the synergies of amorphous nature and honeycomb-like cavities, ZVO-AH shows increased electrochemical activity, accelerated Na-ion diffusion, and robust structure. Impressively, the ZVO-AH anode delivers superior cycle stability (112% retention at 5 A g-1 after 5000 cycles) and high rate capability (150 mAh g-1 at 10 A g-1 ). The synthetic versatility is able to synergistically promote the practical application of more potential materials in sodium-ion storage.

12.
ACS Nano ; 12(8): 8670-8677, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30020773

RESUMO

Layered hydroxides (LHs) have emerged as an important class of functional materials owing to their unusual physicochemical properties induced by various intercalated species. While both the electrochemistry and interlayer engineering of the materials have been reported, the role of interlayer engineering in improving the Li-ion storage of these materials remains unclear. Here, we rationally introduce pillar ions with conjugated anion dicarboxylate groups, cobalt oxalate ions ([CoOx2]2-), into the interlayers of Co(OH)2 nanosheets [denoted as I-Co(OH)2 NSs]. The pillar ion guarantees excellent structural stability, high electrical conductivity, and accelerated Li-ion diffusion. The structure delivers high-rate cycling performance for lithium-ion batteries. This work provides insights for the design of LH-based high-performance electrode materials by a rational interlayer-engineering strategy.

13.
Angew Chem Int Ed Engl ; 57(32): 10246-10250, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29947048

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3 . However, electrocatalytic NRR mainly relies on metal-based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal-free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 µg h-1 mg-1cat. , Faradaic efficiency: 11.59 %) on metal-free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as-engineered nitrogen vacancies of PCN through constructing a dinuclear end-on bound structure for spatial electron transfer. Furthermore, the N-N bond length of adsorbed N2 increases dramatically, which corresponds to "strong activation" system to reduce N2 into NH3 . This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.

14.
Adv Mater ; 30(15): e1706347, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29430788

RESUMO

Research on 2D nanomaterials is rising to an unprecedented height and will continue to remain a very important topic in materials science. In parallel with the discovery of new candidate materials and exploration of their unique characteristics, there are intensive interests to rationally control and tune the properties of 2D nanomaterials in a predictable manner. Considerable attention is focused on modifying these materials structurally or engineering them into designed architectures to meet requirements for specific applications. Recent advances in such structural engineering strategies have demonstrated their ability to overcome current material limitations, showing great promise for promoting device performance to a new level in many energy-related applications. Existing in many forms, these strategies can be categorized based on how they intrinsically or extrinsically alter the pristine structure. Achieved through various synthetic routes and practiced in a range of different material systems, they usually share common descriptors that predestine them to be effective in certain circumstances. Therefore, understanding the underlying mechanism of these strategies to provide fundamental insights into structural design and property tailoring is of critical importance. Here, the most recent development of structural engineering of 2D nanomaterials and their significant effects in energy storage and catalysis technologies are addressed.

15.
Angew Chem Int Ed Engl ; 57(21): 6073-6076, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29473991

RESUMO

N2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH3 production, which still heavily relies on the Haber-Bosch process at the cost of huge energy and massive production of CO2 . A noble-metal-free Bi4 V2 O11 /CeO2 hybrid with an amorphous phase (BVC-A) is used as the cathode for electrocatalytic NRR. The amorphous Bi4 V2 O11 contains significant defects, which play a role as active sites. The CeO2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi4 V2 O11 for rapid interfacial charge transfer. Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield (NH3 : 23.21 µg h-1 mg-1cat. , Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi4 V2 O11 /CeO2 hybrid with crystalline phase (BVC-C) counterpart.

16.
Adv Mater ; 29(46)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29044794

RESUMO

Rational surface engineering of 2D nanoarchitectures-based electrode materials is crucial as it may enable fast ion transport, abundant-surface-controlled energy storage, long-term structural integrity, and high-rate cycling performance. Here we developed the stacked ultrathin Co3 O4 nanosheets with surface functionalization (SUCNs-SF) converted from layered hydroxides with inheritance of included anion groups (OH- , NO3- , CO32- ). Such stacked structure establishes 2D nanofluidic channels offering extra lithium storage sites, accelerated Li-ion transport, and sufficient buffering space for volume change during electrochemical processes. Tested as an anode material, this unique nanoarchitecture delivers high specific capacity (1230 and 1011 mAh g-1 at 0.2 and 1 A g-1 , respectively), excellent rate performance, and long cycle capability (1500 cycles at 5 A g-1 ). The demonstrated advantageous features by constructing 2D nanochannels in nonlayered materials may open up possibilities for designing high-power lithium ion batteries.

17.
ACS Nano ; 11(9): 9550-9557, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28885008

RESUMO

Catalysts for oxygen evolution reaction (OER) are pivotal to the scalable storage of sustainable energy by means of converting water to oxygen and hydrogen fuel. Designing efficient electrocatalysis combining the features of excellent electrical conductivity, abundant active surface, and structural stability remains a critical challenge. Here, we report the rational design and controlled synthesis of metallic transition metal selenide NiCo2Se4-based holey nanosheets as a highly efficient and robust OER electrocatalyst. Benefiting from synergistic effects of metallic nature, heteroatom doping, and holey nanoarchitecture, NiCo2Se4 holey nanosheets exhibit greatly enhanced kinetics and improved cycling stability for OER. When further employed as an alkaline electrolyzer, the NiCo2Se4 holey nanosheet electrocatalyst enables a high-performing overall water splitting with a low applied external potential of 1.68 V at 10 mA cm-2. This work not only represents a promising strategy to design the efficient and robust OER catalysts but also provides fundamental insights into the structure-property-performance relationship of transition metal selenide-based electrocatalytic materials.

18.
Inorg Chem ; 56(14): 7642-7649, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28650157

RESUMO

To achieve high-efficiency lithium ion batteries (LIBs), an effective active electrode material is vital. For the first time, mesoporous single crystals cobalt-doped Fe2O3 (MSCs Co-Fe2O3) is synthesized using formamide as a pore forming agent, through a solvothermal process followed by calcination. Compared with mesoporous single crystals Fe2O3 (MSCs Fe2O3) and cobalt-doped Fe2O3 (Co-Fe2O3), MSCs Co-Fe2O3 exhibits a significantly improved electrochemical performance with high reversible capacity, excellent rate capability, and cycling life as anode materials for LIBs. The superior performance of MSCs Co-Fe2O3 can be ascribed to the combined structure characteristics, including Co-doping and mesoporous single-crystals structure, which endow Fe2O3 with rapid Li+ diffusion rate and tolerance for volume change.

19.
Nano Lett ; 17(6): 3907-3913, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28541709

RESUMO

A general template-directed strategy is developed for the controlled synthesis of two-dimensional (2D) assembly of Co3O4 nanoparticles (ACN) with unique holey architecture and tunable hole sizes that enable greatly improved alkali-ion storage properties (demonstrated for both Li and Na ion storage). The as-synthesized holey ACN with 10 nm holes exhibit excellent reversible capacities of 1324 mAh/g at 0.4 A/g and 566 mAh/g at 0.1 A/g for Li and Na ion storage, respectively. The improved alkali-ion storage properties are attributed to the unique interconnected holey framework that enables efficient charge/mass transport as well as accommodates volume expansion. In situ TEM characterization is employed to depict the structural evolution and further understand the structural stability of 2D holey ACN during the sodiation process. The results show that 2D holey ACN maintained the holey morphology at different sodiation stages because Co3O4 are converted to extremely small interconnected Co nanoparticles and these Co nanoparticles could be well dispersed in a Na2O matrix. These extremely small Co nanoparticles are interconnected to provide good electron pathway. In addition, 2D holey Co3O4 exhibits small volume expansion (∼6%) compared to the conventional Co3O4 particles. The 2D holey nanoarchitecture represents a promising structural platform to address the restacking and accommodate the volume expansion of 2D nanosheets for superior alkali-ion storage.

20.
Phys Chem Chem Phys ; 18(29): 19531-5, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27389924

RESUMO

C&N co-doped Co3O4 hollow nanofibres are prepared by combining the electrospinning technique and the hydrothermal method, which show a high reversible capacity and excellent cycling stability as anode materials for Li-ion batteries. DFT calculations give a good explanation for the experimentally enhanced conductivity in C&N co-doped Co3O4 hollow nanofibres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA