Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(11): eabm3785, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294232

RESUMO

Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked device layout can overcome this limitation, the soft elastomers used in previous studies could highly restrict the deformation of stretchable interconnects. Here, we introduce stacked multilayer network materials as a general platform to incorporate individual components and stretchable interconnects, without posing any essential constraint to their deformations. Quantitative analyses show a substantial enhancement (e.g., by ~7.5 times) of elastic stretchability of serpentine interconnects as compared to that based on stacked soft elastomers. The proposed strategy allows demonstration of a miniaturized electronic system (11 mm by 10 mm), with a moderate elastic stretchability (~20%) and an unprecedented areal coverage (~110%), which can serve as compass display, somatosensory mouse, and physiological-signal monitor.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836614

RESUMO

Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.

3.
Nat Commun ; 11(1): 1180, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132524

RESUMO

Many biological tissues offer J-shaped stress-strain responses, since their microstructures exhibit a three-dimensional (3D) network construction of curvy filamentary structures that lead to a bending-to-stretching transition of the deformation mode under an external tension. The development of artificial 3D soft materials and device systems that can reproduce the nonlinear, anisotropic mechanical properties of biological tissues remains challenging. Here we report a class of soft 3D network materials that can offer defect-insensitive, nonlinear mechanical responses closely matched with those of biological tissues. This material system exploits a lattice configuration with different 3D topologies, where 3D helical microstructures that connect the lattice nodes serve as building blocks of the network. By tailoring geometries of helical microstructures or lattice topologies, a wide range of desired anisotropic J-shaped stress-strain curves can be achieved. Demonstrative applications of the developed conducting 3D network materials with bio-mimetic mechanical properties suggest potential uses in flexible bio-integrated devices.


Assuntos
Materiais Biomiméticos/química , Biomimética/métodos , Desenho Assistido por Computador , Anisotropia , Módulo de Elasticidade , Análise de Elementos Finitos , Teste de Materiais , Software , Estresse Mecânico
4.
Ultrasonics ; 65: 154-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518526

RESUMO

In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA