Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Acta Pharm Sin B ; 14(6): 2554-2566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828147

RESUMO

Oncolytic viruses (OVs), a group of replication-competent viruses that can selectively infect and kill cancer cells while leaving healthy cells intact, are emerging as promising living anticancer agents. Unlike traditional drugs composed of non-replicating compounds or biomolecules, the replicative nature of viruses confer unique pharmacokinetic properties that require further studies. Despite some pharmacokinetics studies of OVs, mechanistic insights into the connection between OV pharmacokinetics and antitumor efficacy remain vague. Here, we characterized the pharmacokinetic profile of oncolytic virus M1 (OVM) in immunocompetent mouse tumor models and identified the JAK‒STAT pathway as a key modulator of OVM pharmacokinetics. By suppressing the JAK‒STAT pathway, early OVM pharmacokinetics are ameliorated, leading to enhanced tumor-specific viral accumulation, increased AUC and Cmax, and improved antitumor efficacy. Rather than compromising antitumor immunity after JAK‒STAT inhibition, the improved pharmacokinetics of OVM promotes T cell recruitment and activation in the tumor microenvironment, providing an optimal opportunity for the therapeutic outcome of immune checkpoint blockade, such as anti-PD-L1. Taken together, this study advances our understanding of the pharmacokinetic-pharmacodynamic relationship in OV therapy.

2.
Mol Ther Oncol ; 32(2): 200813, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38817541

RESUMO

The immune response plays a crucial role in the functionality of oncolytic viruses. In this study, Albendazole, an antihelminthic drug known to modulate the immune checkpoint PD-L1, was combined with the oncolytic virus M1 (OVM1) to treat mice with either prostate cancer (RM-1) or glioma (GL261) tumors. This combination therapy enhanced anti-tumor effects in immunocompetent mice, but not in immunodeficient ones, without increasing OVM1 replication. Instead, it led to an increase in the number of CD8+ T cells within the tumor, downregulated the expression of PD1 on CD8+ T cells, and upregulated activation markers such as Ki67, CD44, and CD69 and the secretion of cytotoxic factors including interferon (IFN)-γ, granzyme B, and tumor necrosis factor (TNF)-α. Consistently, it enhanced the in vitro tumor-killing activity of lymphocytes from tumor-draining lymph nodes or spleens. The synergistic effect of Albendazole on OVM1 was abolished by depleting CD8+ T cells, suggesting a CD8+ T cell-dependent mechanism. In addition, Albendazole and OVM1 therapy increased CTLA4 expression in the spleen, and the addition of CTLA4 antibodies further enhanced the anti-tumor efficacy in vivo. In summary, Albendazole can act synergistically with oncolytic viruses via CD8+ T cell activation, and the Albendazole/OVM1 combination can overcome resistance to CTLA4-based immune checkpoint blockade therapy.

4.
Oncogene ; 42(48): 3575-3588, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864032

RESUMO

Oncolytic viruses are emerging as promising anticancer agents. Although the essential biological function of N-glycosylation on viruses are widely accepted, roles of N-glycan and glycan-processing enzyme in oncolytic viral therapy are remain elusive. Here, via cryo-EM analysis, we identified three distinct N-glycans on the envelope of oncolytic virus M1 (OVM) as being necessary for efficient receptor binding. E1-N141-glycan has immediate impact on the binding of MXRA8 receptor, E2-N200-glycan mediates the maturation of E2 from its precursor PE2 which is unable to bind with MXRA8, and E2-N262-glycan slightly promotes receptor binding. The necessity of OVM N-glycans in receptor binding make them indispensable for oncolysis in vitro and in vivo. Further investigations identified STT3A, a key catalytic subunit of oligosaccharyltransferase (OST), as the determinant of OVM N-glycosylation, and STT3A expression in tumor cells is positively correlated with OVM-induced oncolysis. Increased STT3A expression was observed in various solid tumors, pointing to a broad-spectrum anticancer potential of OVM. Collectively, our research supports the importance of STT3A-mediated N-glycosylation in receptor binding and oncolysis of OVM, thus providing a novel predictive biomarker for OVM.


Assuntos
Hexosiltransferases , Vírus Oncolíticos , Humanos , Glicosilação , Polissacarídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo
5.
Cell Rep Med ; 4(10): 101229, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37820722

RESUMO

Although promising, dendritic cell (DC) vaccines still provide limited clinical benefits, mainly due to the immunosuppressive tumor microenvironment (TME) and the lack of tumor-associated antigens (TAAs). Oncolytic virus therapy is an ideal strategy to overcome immunosuppression and expose TAAs; therefore, they may work synergistically with DC vaccines. In this study, we demonstrate that oncolytic virus M1 (OVM) can enhance the antitumor effects of DC vaccines across diverse syngeneic mouse tumor models by increasing the infiltration of CD8+ effector T cells in the TME. Mechanically, we show that tumor cells counteract DC vaccines through the SIRPα-CD47 immune checkpoint, while OVM can downregulate SIRPα in DCs and CD47 in tumor cells. Since OVM upregulates PD-L1 in DCs, combining PD-L1 blockade with DC vaccines and OVM further enhances antitumor activity. Overall, OVM strengthens the antitumor efficacy of DC vaccines by targeting the SIRPα-CD47 axis, which exerts dominant immunosuppressive effects on DC vaccines.


Assuntos
Vírus Oncolíticos , Vacinas , Camundongos , Animais , Vírus Oncolíticos/genética , Antígeno CD47/genética , Antígeno B7-H1 , Linhagem Celular Tumoral , Antígenos de Neoplasias
6.
Cancer Immunol Res ; 11(10): 1351-1366, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540804

RESUMO

Glioblastoma (GBM) is the deadliest form of brain cancer. It is a highly angiogenic and immunosuppressive malignancy. Although immune checkpoint blockade therapies have revolutionized treatment for many types of cancer, their therapeutic efficacy in GBM has been far less than expected or even ineffective. In this study, we found that the genomic signature of glioma-derived endothelial cells (GdEC) correlates with an immunosuppressive state and poor prognosis of patients with glioma. We established an in vitro model of GdEC differentiation for drug screening and used this to determine that cyclic adenosine monophosphate (cAMP) activators could effectively block GdEC formation by inducing oxidative stress. Furthermore, cAMP activators impaired GdEC differentiation in vivo, normalized the tumor vessels, and altered the tumor immune profile, especially increasing the influx and function of CD8+ effector T cells. Dual blockade of GdECs and PD-1 induced tumor regression and established antitumor immune memory. Thus, our study reveals that endothelial transdifferentiation of GBM shapes an endothelial immune cell barrier and supports the clinical development of combining GdEC blockade and immunotherapy for GBM. See related Spotlight by Lee et al., p. 1300.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Células Endoteliais , Linfócitos T/patologia , Neoplasias Encefálicas/genética , AMP Cíclico , Imunoterapia
7.
Nat Commun ; 14(1): 3410, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296165

RESUMO

Oncolytic viruses (OVs) represent a type of encouraging multi-mechanistic drug for the treatment of cancer. However, attenuation of virulence, which is generally required for the development of OVs based on pathogenic viral backbones, is frequently accompanied by a compromised killing effect on tumor cells. By exploiting the property of viruses to evolve and adapt in cancer cells, we perform directed natural evolution on refractory colorectal cancer cell HCT-116 and generate a next-generation oncolytic virus M1 (NGOVM) with an increase in the oncolytic effect of up to 9690-fold. The NGOVM has a broader antitumor spectrum and a more robust oncolytic effect in a range of solid tumors. Mechanistically, two critical mutations are identified in the E2 and nsP3 genes, which accelerate the entry of M1 virus by increasing its binding to the Mxra8 receptor and antagonize antiviral responses by inhibiting the activation of PKR and STAT1 in tumor cells, respectively. Importantly, the NGOVM is well tolerated in both rodents and nonhuman primates. This study implies that directed natural evolution is a generalizable approach for developing next-generation OVs with an expanded scope of application and high safety.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vírus Oncolíticos/genética , Neoplasias/terapia
8.
Cell Death Dis ; 14(2): 142, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805688

RESUMO

Differentiation therapy using small molecules is a promising strategy for improving the prognosis of glioblastoma (GBM). Histone acetylation plays an important role in cell fate determination. Nevertheless, whether histone acetylation in specific sites determines GBM cells fate remains to be explored. Through screening from a 349 small molecule-library, we identified that histone deacetylase inhibitor (HDACi) MS-275 synergized with 8-CPT-cAMP was able to transdifferentiate U87MG GBM cells into neuron-like cells, which were characterized by cell cycle arrest, rich neuron biomarkers, and typical neuron electrophysiology. Intriguingly, acetylation tags of histone 3 at lysine 9 (H3K9ac) were decreased in the promoter of multiple oncogenes and cell cycle genes, while ones of H3K9ac and histone 3 at lysine 14 (H3K14ac) were increased in the promoter of neuron-specific genes. We then compiled a list of genes controlled by H3K9ac and H3K14ac, and proved that it is a good predictive power for pathologic grading and survival prediction. Moreover, cAMP agonist combined with HDACi also induced glioma stem cells (GSCs) to differentiate into neuron-like cells through the regulation of H3K9ac/K14ac, indicating that combined induction has the potential for recurrence-preventive application. Furthermore, the combination of cAMP activator plus HDACi significantly repressed the tumor growth in a subcutaneous GSC-derived tumor model, and temozolomide cooperated with the differentiation-inducing combination to prolong the survival in an orthotopic GSC-derived tumor model. These findings highlight epigenetic reprogramming through H3K9ac and H3K14ac as a novel approach for driving neuron-fate-induction of GBM cells.


Assuntos
Glioblastoma , Glioma , Humanos , Acetilação , Histonas , Lisina , Glioma/tratamento farmacológico , Glioma/genética , Inibidores de Histona Desacetilases/farmacologia
9.
J Neuroinflammation ; 19(1): 315, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577999

RESUMO

BACKGROUND: Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS: Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS: Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS: Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Sepse , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico
10.
ACS Chem Neurosci ; 13(14): 2110-2121, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35770894

RESUMO

As one of the key injury incidents, tissue acidosis in the brain occurs very quickly within several minutes upon the onset of ischemic stroke. Glutamate, an excitatory amino acid inducing neuronal excitotoxicity, has been reported to trigger the decrease in neuronal intracellular pH (pHi) via modulating proton-related membrane transporters. However, there remains a lack of clarity on the possible role of glutamate in neuronal acidosis via regulating metabolism. Here, we show that 200 µM glutamate treatment quickly promotes glycolysis and inhibits mitochondrial oxidative phosphorylation of primary cultured neurons within 15 min, leading to significant cytosolic lactate accumulation, which contributes to the rapid intracellular acidification and neuronal injury. The reprogramming of neuronal metabolism by glutamate is dependent on adenosine monophosphate-activated protein kinase (AMPK) signaling since the inhibition of AMPK activation by its selective inhibitor compound C significantly reverses these deleterious events in vitro. Moreover, 5α-androst-3ß,5α,6ß-TRIOL (TRIOL), a neuroprotectant we previously reported, can also remarkably reverse intracellular acidification and alleviate neuronal injury through the inhibition of AMPK signaling. Furthermore, TRIOL remarkably reduced the infarct volume and attenuated neurologic impairment in acute ischemic stroke models of middle cerebral artery occlusion in vivo. In summary, we reveal a novel role of glutamate in rapid intracellular acidification injury resulting from glutamate-induced lactate accumulation through AMPK-mediated neuronal reprogramming. Moreover, inhibition of the quick drop in neuronal pHi by TRIOL significantly reduces the cerebral damages, suggesting that it is a promising drug candidate for ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Proteínas Quinases Ativadas por AMP , Ácido Glutâmico , Humanos , Concentração de Íons de Hidrogênio , Lactatos , Neurônios/fisiologia , Fármacos Neuroprotetores
11.
Mol Ther ; 30(12): 3677-3693, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35552024

RESUMO

Oncolytic viruses (OVs) have become a category of promising anticancer immunotherapeutic agents over the last decade. However, the fact that many individuals fail to respond to OVs highlights the importance of defining the barely known immunosuppressive mechanisms that lead to treatment resistance. Here we found that the immunosuppression mediated by tumor-associated myeloid cells (TAMCs) directly quenches the antitumor effect of oncolytic virus M1 (OVM). OVM induces myeloid cells to migrate into tumors and strengthens their immunosuppressive phenotypes. Mechanically, tumor cells treated with OVM secrete interleukin-6 (IL-6) to activate the phosphatidylinositol 3-kinase (PI3K)-γ/Akt axis in TAMCs, promoting infiltration of TAMCs and aggravating their inhibition on cytotoxic CD8+ T lymphocytes. Pharmacologically targeting PI3K-γ relieves TAMC-mediated immunosuppression and enhances the efficacy of OVM. Additional treatment with immune checkpoint antibodies eradicates multiple refractory solid tumors and induces potent long-term antitumor immune memory. Our findings indicate that OVM functions as a double-edged sword in antitumor immunity and provide insights into the rationale for liberating T cell-mediated antitumor activity by abolishing TAMC-mediated immunosuppression.


Assuntos
Vírus Oncolíticos , Células Mieloides , Vírus Oncolíticos/genética , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos
12.
Cell Death Dis ; 13(5): 493, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610201

RESUMO

Accumulating evidence supports the existence of glioma stem cells (GSCs) and their critical role in the resistance to conventional treatments for glioblastoma multiforme (GBM). Differentiation therapy represents a promising alternative strategy against GBM by forcing GSCs to exit the cell cycle and reach terminal differentiation. In this study, we demonstrated that cAMP triggered neuronal differentiation and compromised the self-renewal capacity in GSCs. In addition, cAMP induced negative feedback to antagonize the differentiation process by activating ß-catenin pathway. Suppression of ß-catenin signaling synergized with cAMP activators to eliminate GSCs in vitro and extended the survival of animals in vivo. The cAMP/PKA pathway stabilized ß-catenin through direct phosphorylation of the molecule and inhibition of GSK-3ß. The activated ß-catenin translocated into the nucleus and promoted the transcription of APELA and CARD16, which were found to be responsible for the repression of cAMP-induced differentiation in GSCs. Overall, our findings identified a negative feedback mechanism for cAMP-induced differentiation in GSCs and provided potential targets for the reinforcement of differentiation therapy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/metabolismo , beta Catenina/metabolismo
13.
Signal Transduct Target Ther ; 7(1): 100, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393389

RESUMO

Over the last decade, oncolytic virus (OV) therapy has shown its promising potential in tumor treatment. The fact that not every patient can benefit from it highlights the importance for defining biomarkers that help predict patients' responses. As particular self-amplifying biotherapeutics, the anti-tumor effects of OVs are highly dependent on the host factors for viral infection and replication. By using weighted gene co-expression network analysis (WGCNA), we found matrix remodeling associated 8 (MXRA8) is positively correlated with the oncolysis induced by oncolytic virus M1 (OVM). Consistently, MXRA8 promotes the oncolytic efficacy of OVM in vitro and in vivo. Moreover, the interaction of MXRA8 and OVM studied by single-particle cryo-electron microscopy (cryo-EM) showed that MXRA8 directly binds to this virus. Therefore, MXRA8 acts as the entry receptor of OVM. Pan-cancer analysis showed that MXRA8 is abundant in most solid tumors and is highly expressed in tumor tissues compared with adjacent normal ones. Further study in cancer cell lines and patient-derived tumor tissues revealed that the tumor selectivity of OVM is predominantly determined by a combinational effect of the cell membrane receptor MXRA8 and the intracellular factor, zinc-finger antiviral protein (ZAP). Taken together, our study may provide a novel dual-biomarker for precision medicine in OVM therapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Microscopia Crioeletrônica , Humanos , Imunoglobulinas , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Vírus Oncolíticos/genética
14.
Front Immunol ; 12: 721830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675919

RESUMO

The prognosis of malignant gliomas remains poor, with median survival fewer than 20 months and a 5-year survival rate merely 5%. Their primary location in the central nervous system (CNS) and its immunosuppressive environment with little T cell infiltration has rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is developing rapidly and can help overcome these obstacles. But for now, malignant gliomas remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor cells, replicate and spread through tumors while inducing antitumor immune responses. OVTs can also recondition the tumor microenvironment and improve the efficacy of other immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses (OVs), optimizing OVT has proved challenging in clinical development, and marketing approvals for OVTs have been rare. In June 2021 however, as a genetically engineered OV based on herpes simplex virus-1 (G47Δ), teserpaturev got conditional and time-limited approval for the treatment of malignant gliomas in Japan. In this review, we summarize the current state of OVT, the synergistic effect of OVT in combination with other immunotherapies as well as the hurdles to successful clinical use. We also provide some suggestions to overcome the challenges in treating of gliomas.


Assuntos
Terapia Genética/métodos , Glioma/terapia , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Animais , Biomarcadores Tumorais , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Engenharia Genética/métodos , Predisposição Genética para Doença , Terapia Genética/efeitos adversos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glioma/diagnóstico , Glioma/etiologia , Humanos , Imunoterapia/efeitos adversos , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Resultado do Tratamento
16.
Int J Cancer ; 149(6): 1369-1384, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086978

RESUMO

Oncolytic virotherapies are perceived as remarkable immunotherapies coming into view and represent highly promising cancer treatments, yet to figure out its specific immune responses and underlying barriers remains critical. Albeit recent studies have demonstrated that oncolytic viruses (OVs) could fine tune tumor microenvironment (TME) to elicit tumor suppression mainly due to effective T-cell responses, the interaction between suppressive T cells and OVs is barely undetermined. Herein, we found that regulatory T cells (Treg cells) were increased in the TME following systemic administration of oncolytic virus M1 along with the higher expression of relative cytokines and chemokines in both mouse RM-1 prostatic carcinoma model and mouse B16F10 melanoma model. Besides, Treg cells expressed high levels of CD25 post-M1 treatment, and its suppressive effect on CD8+ T cells was also elevated. Depletion of Treg cells in M1-treated groups significantly reinforced antitumor effect of M1. Specific targeting of Treg cells using cytotoxic T lymphocyte-associated protein 4 (CTLA-4) antibody (Ab) in combination with M1 treatment elicited a more profound tumor suppression and longer overall survival time than M1 alone in both tumor models. Moreover, CTLA-4 Ab further aggrandized antitumor immune response elicited by M1, including increased infiltration of CD45+ immune cells and CD8+ or CD4+ T lymphocytes, decreased ratio of Treg cells to CD4+ T lymphocytes, the intensified lymphocytotoxicity and elevated secretion of cytotoxic cytokines like interferon-γ, granzyme B and perforin. Therefore, our findings constituted a suggestive evidence that targeting Treg cells in M1-based oncolytic virotherapy may achieve a highly response in clinical cancer research.


Assuntos
Inibidores de Checkpoint Imunológico/administração & dosagem , Melanoma Experimental/terapia , Vírus Oncolíticos/fisiologia , Doenças Prostáticas/terapia , Linfócitos T Reguladores/metabolismo , Administração Intravenosa , Animais , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Melanoma Experimental/imunologia , Camundongos , Terapia Viral Oncolítica , Doenças Prostáticas/imunologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncogene ; 40(29): 4783-4795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155344

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype among breast tumors and remains a challenge even for the most current therapeutic regimes. Here, we demonstrate that oncolytic alphavirus M1 effectively kills both TNBC and non-TNBC. ER-stress and apoptosis pathways are responsible for the cell death in non-TNBC as reported in other cancer types, yet the cell death in TNBC does not depend on these pathways. Transcriptomic analysis reveals that the M1 virus activates necroptosis in TNBC, which can be pharmacologically blocked by necroptosis inhibitors. By screening a library of clinically available compounds commonly used for breast cancer treatment, we find that Doxorubicin enhances the oncolytic effect of the M1 virus by up to 100-fold specifically in TNBC in vitro, and significantly stalls the tumor growth of TNBC in vivo, through promoting intratumoral virus replication and further triggering apoptosis in addition to necroptosis. These findings reveal a novel antitumor mechanism and a new combination regimen of the M1 oncolytic virus in TNBC, and highlight a need to bridge molecular diagnosis with virotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Doxorrubicina , Terapia Viral Oncolítica
18.
Zool Res ; 42(2): 250-251, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738990

RESUMO

Following the publication of our paper (Zhang et al., 2020), it has come to our attention that we erroneously listed two funding sources unrelated to this study in the "ACKNOWLEDGEMENTS" section. Hereby, we wish to update the "ACKNOWLEDGEMENTS" section as a correction.

19.
Am J Cancer Res ; 11(2): 458-478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575081

RESUMO

Activation of the cyclic adenosine monophosphate (cAMP) pathway induces the glial differentiation of glioblastoma (GBM) cells, but the fate of differentiated cells remains poorly understood. Transcriptome analyses have revealed significant changes in the cell cycle- and senescence-related pathways in differentiated GBM cells induced by dibutyryl cAMP (dbcAMP). Further investigations showed that reactive oxygen species (ROS) derived from enhanced mitochondrial function are involved in senescence induction and proliferation inhibition. Moreover, we found that IL-6 from dbcAMP- or temozolomide (TMZ)-induced senescent cells facilitates the glycolytic phenotype of GBM cells and that inhibiting the IL-6-related pathway hinders the proglycolytic effect of either agent. In patient-derived GBM xenograft models, a specific antibody targeting the IL-6 receptor tocilizumab (TCZ) significantly prolongs the survival time of TMZ-treated mice. Taken together, these results suggest that both the differentiation-inducing agent dbcAMP and the chemotherapy drug TMZ are able to drive GBM cells to senescence, and the latter releases IL-6 to potentiate glycolysis, suggesting that IL-6 is a target for adjuvant chemotherapy in GBM treatment.

20.
Cancer Lett ; 502: 9-24, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444691

RESUMO

NanoKnife, a nonthermal ablation technique also termed irreversible electroporation (IRE), has been adopted in locally advanced pancreatic cancer (LAPC) treatment. However, reversible electroporation (RE) caused by heterogeneous electric field magnitude leads to inadequate ablation and tumor recurrence. Alphavirus M1 has been identified as a novel natural oncolytic virus which is nonpathogenic and with high tumor selectivity. This study evaluated improvements to therapeutic efficacy through combination therapy incorporating NanoKnife and M1 virus. We showed that IRE triggered reactive oxygen species (ROS)-dependent apoptosis in pancreatic cancer cells (PCCs) mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. When NanoKnife was combined with M1 virus, the therapeutic efficacy was synergistically enhanced. The combinatorial treatment further inhibited tumor proliferation and prolonged the survival of orthotopic pancreatic cancer (PC)-bearing immunocompetent mice. In depth, NanoKnife enhanced the oncolytic effect of M1 by promoting its infection. The combination turned immune-silent tumors into immune-inflamed tumors characterized by T cell activation. Clinicopathologic analysis of specific M1 oncolytic biomarkers indicated the potential of the combination regimen. The combinatorial therapy represents a promising therapeutic efficacy and may ultimately improve the prognosis of patients with LAPC.


Assuntos
Técnicas de Ablação/métodos , Alphavirus/fisiologia , Neoplasias Pancreáticas/terapia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Eletroporação , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA