Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299690

RESUMO

Plasmonic nanomaterials have attracted great attention in the field of catalysis and sensing for their outstanding electrical and optical properties. Here, a representative type of nonstoichiometric Cu2-xSe nanoparticles with typical near-infrared (NIR) localized surface plasma resonance (LSPR) properties originating from their copper deficiency was applied to catalyze the oxidation of colorless TMB into their blue product in the presence of H2O2, indicating they had good peroxidase-like activity. However, glutathione (GSH) inhibited the catalytic oxidation of TMB, as it can consume the reactive oxygen species. Meanwhile, it can induce the reduction of Cu(II) in Cu2-xSe, resulting in a decrease in the degree of copper deficiency, which can lead to a reduction in the LSPR. Therefore, the catalytic ability and photothermal responses of Cu2-xSe were decreased. Thus, in our work, a colorimetric/photothermal dual-readout array was developed for the detection of GSH. The linear calibration for GSH concentration was in the range of 1-50 µM with the LOD as 0.13 µM and 50-800 µM with the LOD as 39.27 µM. To evaluate the practicability of the assay, tomatoes and cucumbers were selected as real samples, and good recoveries indicated that the developed assay had great potential in real applications.

2.
Research (Wash D C) ; 2022: 9782713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966757

RESUMO

The stimulus-responsive room-temperature phosphorescence (RTP) materials have become an increasingly significant topic in the fields of bioimaging, sensing, and anticounterfeiting. However, this kind of materials is scarce to date, especially for the ones with delicate stimulus-responsive behavior. Herein, a universal strategy for multilevel thermal erasure of RTP via chromatographic separation of host-guest doping RTP systems is proposed. The tunable host-guest systems, matrix materials, heating temperature, and time are demonstrated to allow precise six-level data encryption, QR code encryption, and thermochromic phosphorescence encryption. Mechanistic study reveals that the thermal-responsive property might be attributed to molecular thermal motion and the separation effect of the silica gel, which provides expanded applications of host-guest RTP materials such as cold chain break detection. This work offers a simple yet universal way to construct advanced responsive RTP materials.

3.
J Photochem Photobiol B ; 233: 112496, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689932

RESUMO

The application of nanostructures to design fluorescence resonance energy transfer (FRET) based sensing platforms has been greatly concerned with the demand for sensitive and selective detection of biomolecules. Here, a novel sensitive turn-on fluorescence strategy based on the FRET mechanism has been designed for hyaluronidase (HAase) detection through the modulation of Cu2-xSe@HA-Rh6G nanoprobe fabricated by self-assembly of rhodamine 6G (Rh6G) together with Cu2-xSe@HA nanoparticles through electrostatic adsorption. The Cu2-xSe@HA had extensive localized surface plasma resonance (LSPR) absorption in the wide range of ultraviolet (UV) to near-infrared (NIR) wavelengths and showed good light capture characteristics, which can be acted as good acceptors in the FRET interactions with Rh6G, inducing its efficient fluorescence quenching. In the presence of HAase, the FRET process was disrupted and the fluorescence signal was recovered. In the range of 0.1-10.0 U/mL, the fluorescence recovery of Rh6G showed a good linear relationship with the concentration of HAase, and the detection limit was 0.06 U/mL. The sensing platform has been used for HAase detection in real urine samples and cancer cells imaging.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Hialuronoglucosaminidase , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Ácido Hialurônico/química , Hialuronoglucosaminidase/metabolismo , Rodaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA