RESUMO
Esterification kinetics on acetic acid with isopropyl alcohol was studied in an intensified fixed bed reactor at 333-353 K with Amberlyst 36 Wet. The effects of volume flow rate, molar ratio of reactants, catalyst loading, and operating temperature were investigated and optimized. The method of UNIFAC was applied to calculate the activity coefficient of each component for correcting the nonideality of the solution. Reaction enthalpy, entropy, and Gibbs free energy were calculated in different cases. The pseudohomogeneous model, Eley-Rideal model, and Langmuir-Hinshelwood-Hougen-Watson model were used to establish kinetic equations of the reaction conducted in the IFBR. It was proved that the LHHW model can accurately describe the esterification kinetics in the intensified fixed bed reactor.