Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(40): e202409419, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975974

RESUMO

The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81 % and electrochemical activity of 693 mA⋅cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.

2.
Angew Chem Int Ed Engl ; 62(20): e202218603, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808411

RESUMO

Electricity generation and chemical productions are both critically important for the sustainable development of modern civilization. Here, a novel bifunctional Zn-organic battery has been established for the concurrent enhanced electricity output and semi-hydrogenations of a series of biomass aldehyderivatives, for the high value-added chemical syntheses. Among them, the typical Zn-furfural (FF) battery equipped with Cu foil-supported edge-enriched Cu nanosheets as cathodic electrocatalyst (Cu NS/Cu foil), provides a maximum current density and power density of 14.6 mA cm-2 and 2.00 mW cm-2 , respectively, and in the meantime, produces high value product, furfural alcohol (FAL). The Cu NS/Cu foil catalyst exhibits excellent electrocatalytic performance of ≈93.5 % conversion ratio and ≈93.1 % selectivity for FF semi-hydrogenation at a low potential of -1.1 V vs. Ag/AgCl by using H2 O as H source, and shows impressive performance for various biomass aldehyderivatives semi-hydrogenation.

3.
Front Chem ; 9: 809111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083197

RESUMO

Perovskite oxides have been established as a promising kind of catalyst for alkaline oxygen evolution reactions (OER), because of their regulated non-precious metal components. However, the surface lattice is amorphous during the reaction, which gradually decreases the intrinsic activity and stability of catalysts. Herein, the precisely control tungsten atoms substituted perovskite oxides (Pr0.5Ba0.5Co1-xWxO3-δ) nanowires were developed by electrostatic spinning. The activity and Tafel slope were both dependent on the W content in a volcano-like fashion, and the optimized Pr0.5Ba0.5Co0.8W0.2O3-δ exhibits both excellent activity and superior stability compared with other reported perovskite oxides. Due to the outermost vacant orbitals of W6+, the electronic structure of cobalt sites could be efficiently optimized. Meanwhile, the stronger W-O bond could also significantly improve the stability of latticed oxide atoms to impede the generation of surface amorphous layers, which shows good application value in alkaline water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA