RESUMO
Purpose: The purpose of this study was to design an objective method for measurement of head positions as achieved with use of a microelectromechanical systems (MEMS) sensor. In addition, to use this system to observe the abnormal head position (AHP) in patients with congenital superior oblique palsy (SOP) before and after their surgery. Methods: An MEMS sensor was designed for recording of the pitch, roll, and yaw values of the head position in real time. The MEMS sensor was then fixed on the synoptophore from -30 degrees to +30 degrees positions horizontally and vertically to test the accuracy of these measurements. Then, we tested 13 participants with AHP using the MEMS method and the photographic method and compared their correlations. Finally, the pitch, roll, and yaw values of head positions were measured using this MEMS sensor in 31 patients with congenital SOP as performed before and after their surgery. Results: The MEMS sensor (LPMS-B2; Alubi, Guangzhou, China; 400 hertz [Hz]), as based on the theory of a gyroscope, was designed and connected to a smartphone via Bluetooth. It was able to conveniently record the patient's pitch, roll, and yaw head positions in real time, recordings which were consistent with the scales of the synoptophore (P > 0.05) and good correlations with the photographic method (P < 0.001). The main preoperative AHP in patients with SOP was roll (22/31, 71%). Pre- and postoperative vertical deviations were 16.4 ± 7.3 prism diopters (PD) and 4.1 ± 4.2 PD, respectively (P = 0.001). The AHP in patients with SOP was positively correlated with the angle of extorsion in the dominant eye (P = 0.01), rather than that of the vertical deviation. Conclusions: The MEMS sensor described in this report is a simple, practical, and accurate objective device for use in head position measurements. In patients with SOP, the AHP is related to the angle of extorsion in the dominant eye. Translational Relevance: The MEMS sensor was designed as a micro-wireless dynamic high-precision device for AHP measurement, which has the potential for use in a clinic.
Assuntos
Sistemas Microeletromecânicos , Humanos , Feminino , Masculino , Criança , Adulto , Adolescente , Sistemas Microeletromecânicos/instrumentação , Adulto Jovem , Doenças do Nervo Troclear/fisiopatologia , Doenças do Nervo Troclear/diagnóstico , Cabeça , Postura/fisiologia , Pré-Escolar , Movimentos da Cabeça/fisiologia , Pessoa de Meia-Idade , Desenho de EquipamentoRESUMO
Selective catalytic reduction (SCR) is a efficiently nitrogen oxides removal technology from stationary source flue gases. Catalysts are key component in the technology, but currently face problems including poor low-temperature activity, narrow temperature windows, low selectivity, and susceptibility to water passivation and sulphur dioxide poisoning. To develop high-efficiency low-temperature denitrification activity catalyst, manganese-based catalysts have become a focal point of research globally for low-temperature SCR denitrification catalysts. This article investigates the denitrification efficiency of unsupported manganese-based catalysts, exploring the influence of oxidation valence, preparation method, crystallinity, crystal form, and morphology structure. It examines the catalytic performance of binary and multicomponent unsupported manganese-based catalysts, focusing on the use of transition metals and rare earth metals to modify manganese oxide. Furthermore, the synergistic effect of supported manganese-based catalysts is studied, considering metal oxides, molecular sieves, carbon materials, and other materials (composite carriers and inorganic non-metallic minerals) as supports. The reaction mechanism of low-temperature denitrification by manganese-based catalysts and the mechanism of sulphur dioxide/water poisoning are analysed in detail, and the development of practical and efficient manganese-based catalysts is considered.
RESUMO
Lithium metal is regarded as ideal anode material due to its high theoretical specific capacity and low electrode potential. However, the uncontrollable growth of lithium dendrites seriously hinders the practical application of lithium-metal batteries (LMBs). Among various strategies, carbon nanofiber materials have shown great potential in stabilizing the lithium-metal anode (LMA) due to their unique functional and structural characteristics. Here, the latest research progress on carbon nanofibers (CNFs) for LMA is systematically reviewed. Firstly, several common preparation techniques for CNFs are summarized. Then, the development prospects, strategies and the latest research progress on CNFs for dendrite-free LMA are emphatically introduced from the perspectives of neat CNFs and CNF-based composites. Finally, the current challenges and prospects of CNFs for stabilizing LMA are summarized and discussed. These discussions and proposed strategies provide new ideas for the development of high-performance LMBs.
RESUMO
2D layered Bi2WO6 (BWO) is a widely used attractive photocatalyst for degrading VOCs, but the low visible-light utilization and the easy stacking 2D nanosheets (NSs) limit photocatalysis efficiency and stability. Here, inspired by Eucalyptus, a synergistic strategy of multiscale domain-confinement and electrostatic force action, based on electrospinning is proposed, for fabricating a heteromorphic BWO photocatalyst. It is found that BWO NSs can grow radially in an orderly spaced arrangement along BWO nanofibers (NFs) during sintering, thereby forming 1D/2D BWO junctions like eucalyptus leaves. This interpenetrating 1D/2D network structure not only solves the easy stacking problem of BWO NSs but also selectively exposes the {010} crystal planes that exhibit efficient hole oxidation. In addition, this peculiar structure enriches electrons at the 1D/2D interface to avoid carrier recombination, thus improving the photocatalytic activity. The photocatalyst material with a reduced bandgap width from 2.56 to 2.49 eV can rapidly degrade 100% of acetaldehyde under visible light without using sacrificial agents and photosensitizers and shows superior stability for eight cycles without any decay. This study provides a feasible method to synthesize an efficient and stable BWO photocatalyst.
RESUMO
Renewable-driven electrocatalytic nitrate conversion offers a promising alternative to alleviate nitrate pollution and simultaneously harvest green ammonia. However, due to the complex proton-electron transfer processes, the reaction mechanism remains elusive, thereby limiting energy efficiency. Here, we adopt Ni(OH)2 as a model catalyst to investigate the dynamic evolution of the reaction interface. A proposed OH cycle mechanism involves the formation of a locally OH-enriched microenvironment to promote the hydrogenation process, which is identified through in-situ spectroscopy and isotopic labelling. By further activating the dynamic state through the implementation of surface vacancies via plasma, we achieve a high Faradaic efficiency of almost 100%. The activated interface accelerates the OH cycle by enhancing dehydroxylation, water dissociation, and OH adsorption, thereby promoting nitrate electroreduction and inhibiting hydrogen evolution. We anticipate that rational activation of the dynamic interfacial state can facilitate electrocatalytic interface activity and improve reaction efficiency.
RESUMO
BACKGROUND: The primary cause of cancer-related fatalities globally is lung cancer. Although the chemotherapy drug cisplatin (DDP) has brought certain benefits to patients, the rapid development of drug resistance has greatly hindered treatment success. METHODS: We used the lung squamous cell carcinoma (LUSC) mRNA data set to explore the differentially expressed gene (RND1) in LUSC and detected RND1 expression in LUSC cells and DDP-resistant cells by qRT-PCR. Meanwhile, we performed abnormal expression treatment on RND1 and conducted CCK8, colony formation, and flow cytometry to evaluate the impact of RND1 expression on cell proliferation, apoptosis, and DDP resistance. In addition, we analyzed metabolism pathways involving RND1 using GSEA. We also used online tools such as hTFtarget and JASPAR to screen for the upstream transcription factor FOXA2 of RND1 and verified their relationship through CHIP and dual luciferase experiments. Finally, we validated the role of FOXA2-RND1 in DDP resistance in LUSC through the above experiments. RESULTS: RND1 was downregulated in LUSC, and overexpression of RND1 repressed proliferation and DDP resistance of LUSC cells and facilitated cell apoptosis. RND1 modulated the arachidonic acid (AA) metabolism pathway, and FOXA2 positively manipulated RND1 expression. By activating FOXA2, stabilizing RND1, and regulating AA levels, the sensitivity of LUSC cells to DDP could be enhanced. CONCLUSION: Our study suggested that FOXA2 positively modulated the RND1-AA pathway, which repressed the resistance of LUSC cells to DDP.
Assuntos
Antineoplásicos , Ácido Araquidônico , Carcinoma de Células Escamosas , Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Araquidônico/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacosRESUMO
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
RESUMO
We propose a plasma chemical looping CO2 splitting (PCLCS) approach that enables highly efficient CO2 conversion into O2-free CO at mild temperatures. PCLCS achieves an impressive 84% CO2 conversion and a 1.3 mmol g-1 CO yield, with no O2 detected. Crucially, this strategy significantly lowers the temperature required for conventional chemical looping processes from 650 to 1000 °C to only 320 °C, demonstrating a robust synergy between plasma and the Ce0.7Zr0.3O2 oxygen carrier (OC). Systematic experiments and density functional theory (DFT) calculations unveil the pivotal role of plasma in activating and partially decomposing CO2, yielding a mixture of CO, O2/O, and electronically/vibrationally excited CO2*. Notably, these excited CO2* species then efficiently decompose over the oxygen vacancies of the OCs, with a substantially reduced activation barrier (0.86 eV) compared to ground-state CO2 (1.63 eV), contributing to the synergy. This work offers a promising and energy-efficient pathway for producing O2-free CO from inert CO2 through the tailored interplay of plasma and OCs.
RESUMO
In recent years, the exercise behavior of Chinese adolescents has been on the decline, which is extremely detrimental to their physical and mental health development. However, few studies have explored the mechanisms by which exercise cognition influences Chinese adolescents' exercise behavior. The present study aimed to investigate the relationship between exercise cognition and exercise behavior among Chinese adolescents and the mediating role of satisfying basic psychological needs for exercise. The study consisted of 996 adolescents (44.6% males, 55.4% females) between the ages of 12 and 15 (M = 13.34, SD = 1.059). Participants' exercise behaviors and the satisfaction of basic psychological needs for exercise data were collected via surveys. Structure equation modeling (SEM) was performed to examine the direct and indirect effects. The results were as follows: (1) adolescents' perceptions of exercise were significantly associated with exercise behavior and (2) the mediation model suggests that the satisfaction of basic psychological needs for exercise is an important mechanism by which exercise cognition influences the occurrence of exercise behavior. Therefore, it is crucial to help adolescents form good exercise cognition. Schools, families, and society should take responsibility for adolescents' formation of good exercise cognition and satisfy adolescents' basic psychological needs for exercise so as to enhance adolescents' exercise behaviors and thereby develop good exercise habits.
RESUMO
Ceramic aerogel is an appealing fireproof and heat-insulation material, but synchronously improving its mechanical and thermal properties is a challenge. Moreover, the expensive discontinuous processing techniques inhibit the large-scale fabrication of ceramic aerogels. Here, we propose a water-based electrospinning method, based on the hydrolysis and condensation reactions of ceramic precursor salts themselves, for the continuous and rapid (0.025 m3/min) fabrication of ceramic fiber sponge aerogels with dual micronano fiber networks, which show synchronous enhanced fireproof, thermal insulation, and resilience performance. The elastic ceramic micro/nano fiber sponge aerogels contain robust silica-based microfibers as a firm skeleton and alumina-based nanofibers as elastic thermal insulation filler. The sponges have a high porosity of >99.8%, a low mass density (6.21 mg/cm3), a small thermal conductivity (0.022 W/m·K), and a large compression strength (21.15 kPa at 80% strain). The ceramic fiber sponges can effectively prevent the propagation of thermal runaway when a lithium battery experiences catastrophic thermal shock (>1000 °C) in the power battery packs. The proposed strategy is feasible for low-cost and rapid synthesizing ceramic aerogels toward effective battery thermal management.
RESUMO
Using electrocatalysts is effective in solving the slow reaction kinetics of polysulfides in Li-S batteries, but designing stable electrocatalysts with an integrated adsorption-catalysis-desorption system is challenging. Here, we report a stable metal-semiconductor (Co-ZrO2) heterojunction electrocatalyst fabricated by assembling electron-coupled Co-ZrO2 nanodots into macroporous carbon nanofibers. The Co-ZrO2 contact causes interfacial electron enrichment and electron transfer from Co to ZrO2, which creates abundant Lewis-acid sites on Co that can adsorb polysulfides. Simultaneously, the enriched interfacial electrons can activate the S-S bond and boost the catalytic conversion of long-chain polysulfides, while the ZrO2 with Lewis-base sites facilitate the desorption of short-chain polysulfides from the electrocatalyst. Moreover, the nanodot heterojunctions show great chemical stability and high redox reaction kinetics of polysulfides. Li-S batteries show high discharge capacities of 954.5 mA h·g-1 at 0.5 C with a retention of 84.9% over 200 cycles, and 710.2 mA hg-1 at 1 C with a retention of 98.6% over 200 cycles. This study provides an effective strategy for developing active and durable electrocatalysts for Li-S batteries.
RESUMO
Despite its significant potential in various disease treatments and diagnostics, microbiotherapy is consistently plagued by multiple limitations ranging from manufacturing challenges to in vivo functionality. Inspired by the strategy involving nonproliferating yet metabolically active microorganisms, we report an intracellular gelation approach that can generate a synthetic polymer network within bacterial cells to solve these challenges. Specifically, poly(ethylene glycol dimethacrylate) (PEGDA, 700 Da) monomers are introduced into the bacterial cytosol through a single cycle of freeze-thawing followed by the initiation of intracellular free radical polymerization by UV light to create a macromolecular PEGDA gel within the bacterial cytosol. The molecular crowding resulting from intracytoplasmic gelation prohibits bacterial division and confers robust resistance to simulated gastrointestinal fluids and bile acids while retaining the ability to secrete functional proteins. Biocompatibility assessments demonstrate that the nondividing gelatinized bacteria are effective in alleviating systemic inflammation triggered by intravenous Escherichia coli injection. Furthermore, the therapeutic efficacy of gelatinized Lactobacillus rhamnosus in colitis mice provides additional support for this approach. Collectively, intracellular gelation indicates a universal strategy to manufacture next-generation live biotherapeutics for advanced microbiotherapy.
Assuntos
Escherichia coli , Polietilenoglicóis , Animais , Camundongos , Escherichia coli/efeitos dos fármacos , Polietilenoglicóis/química , Géis/química , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/induzido quimicamente , Metacrilatos/químicaRESUMO
Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.
RESUMO
Background: Egl-9 family hypoxia-inducible factor 3 (EGLN3) is involved in the regulation of tumor microenvironment and tumor progression. However, its biological function and clinical significance in various cancers remain unclear. Methods: RNA-seq, immunofluorescence, and single-cell sequencing were used to investigate the expression landscape of EGLN3 in pan-cancer. The TISCH2 and CancerSEA databases were used for single-cell function analysis of EGLN3 in tumors. TIMER2.0 database was used to explain the relationship between EGLN3 expression and immune cell infiltration. In addition, the LinkedOmics database was used to perform KEGG enrichment analysis of EGLN3 in pan-cancer. siRNA was used to silence gene expression. CCK8, transwell migration assay, flow cytometry analysis, RT-PCR, and western blotting were used to explore biological function of EGLN3. Results: The results showed that EGLN3 was highly expressed in a variety of tumors, and was mainly localized to the cytosol. EGLN3 expression is associated with immunoinfiltration of a variety of immune cells, including macrophages in the tumor immune microenvironment and tumor-associated fibroblasts. Functional experiments revealed that EGLN3 knockdown could inhibit cell proliferation, migration, and promote cell apoptosis. In addition, we found that Bax expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group. Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant process, especially tumor cell apoptosis. Conclusion: We comprehensively investigated the expression pattern, single-cell function, immune infiltration level and regulated signaling pathway of EGLN3 in pan-cancer. We found that EGLN3 is an important hypoxia and immune-related gene that may serve as a potential target for tumor immunotherapy.
RESUMO
BACKGROUND: The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE: Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied. METHODS: CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. in vitro, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS: With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue. CONCLUSIONS: This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Necroptose , Silibina , Silibina/farmacologia , Silibina/química , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Necroptose/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Estrutura Molecular , Células Tumorais Cultivadas , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismoRESUMO
PURPOSE: Strabismus reoperation in Graves' ophthalmopathy (GO) is complicated and challenging. The purpose of this study was to evaluate the various surgical strategies of strabismus reoperation and their outcomes in patients with GO. METHODS: A retrospective study was conducted on strabismus reoperations performed at the Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China from 2008 to 2018. Data collected included sex, age at surgery, duration of deviation, ocular alignment, ocular motility, various surgical procedures performed and surgical outcomes. Surgical methods included rectus recession for newly developed strabismus, rectus resection for undercorrection and anterior advancement of a previously recessed rectus for overcorrection. Surgical success was defined as an absence of diplopia, a horizontal deviation of ≤ 10 prism diopters (PD) and a vertical deviation of ≤ 5 PD at distance in primary and reading positions. RESULTS: Of the 153 GO patients receiving strabismus surgery, 27 cases (20 males, 7 females) underwent reoperation for strabismus, with a reoperation rate of 17.6%. Success rates of reoperation in patients with a previous undercorrection and overcorrection were 45% and 71.4%, respectively. Success rates of rectus recession, rectus resection and anterior advancement were 47.1%, 66.7% and 50%, respectively. Two patients underwent the third surgery. The overall success rate was 51.9%. CONCLUSIONS: Rectus recession is an effective method for GO patients with newly-developed strabismus. Rectus resection may benefit some patients with undercorrection who underwent a maximal degree of rectus recession. Anterior advancement of a previously recessed rectus is effective for cases with overcorrection.
Assuntos
Oftalmopatia de Graves , Músculos Oculomotores , Procedimentos Cirúrgicos Oftalmológicos , Reoperação , Estrabismo , Humanos , Oftalmopatia de Graves/cirurgia , Oftalmopatia de Graves/complicações , Oftalmopatia de Graves/diagnóstico , Masculino , Estrabismo/cirurgia , Estrabismo/etiologia , Estrabismo/fisiopatologia , Feminino , Estudos Retrospectivos , Reoperação/estatística & dados numéricos , Músculos Oculomotores/cirurgia , Procedimentos Cirúrgicos Oftalmológicos/métodos , Pessoa de Meia-Idade , Adulto , Movimentos Oculares/fisiologia , Visão Binocular/fisiologia , Idoso , Seguimentos , Resultado do Tratamento , Acuidade Visual , Adulto JovemRESUMO
INTRODUCTION: Dichoptic training has emerged as a promising rehabilitation approach for improving binocular visual function in patients with strabismus. A prospective observational study design was employed to assess the effectiveness of online video game-based dichoptic training in rehabilitating binocular visual function in patients who had undergone an operation for intermittent exotropia. METHODS: A total of 64 patients who had undergone an operation for intermittent exotropia were recruited and divided into the training group and the control group based on whether they would receive the dichoptic training. The dichoptic training was conducted for 3 months in the training group and the control group would not accept any form of orthoptic therapy. Assessments of binocular visual functions and deviation were conducted at baseline, 3-month and 6-month follow-up. RESULTS: Twenty-nine participants in the training group (mean 9.69 ± 2.66 years old) and 26 participants in the control group (mean 8.41 ± 2.64 years old) completed follow-up. At both 3- and 6-month follow-ups, the training group showed superior distance stereopsis compared to the control group, with near stereopsis only showing significant difference at the 6-month follow-up. Additionally, the training group exhibited significantly less distance exo-deviation drift than the control group at these times, and no significant difference was observed in near exo-deviation drift between the groups. The control group had a significantly higher rate of suboptimal surgical outcomes at both the 3- and 6-month follow-up. However, no significant differences were observed in simultaneous perception and fusion functions between the two groups. CONCLUSIONS: Online video game-based dichoptic training has the potential to become a novel postoperative rehabilitation strategy for patients with intermittent exotropia.
RESUMO
PURPOSE: To evaluate the outcomes of a novel modification of the Nishida procedure with medial rectus recession (Nishida-MRc) for myopic strabismus fixus (MSF) and to compare this modified procedure with the half Jensen's union with medial rectus recession (U-MRc). METHODS: The medical records of MSF patients who underwent strabismus surgery at a single institution between January 2017 and June 2022 were retrospectively reviewed. The main outcome measures assessed were postoperative improvements in ocular alignment and motility. Surgical success was defined as horizontal and vertical deviations ≤15Δ. RESULTS: A total of 45 patients were included, of whom 39 had no previous strabismus surgery. All but 3 had follow-up ≥8 months. Nishida-MRc, with or without a traction suture (Ts), had a success rate (9/16 [56%]) higher, though not statistically significantly so, than U-MRc with or without Ts (11/29 [38%]). The Nishida-MRc group tended to have less frequent use of Ts (25% vs 52%; P = 0.076), and 94% of these patients had a deviation within 20Δ, compared with 59% for U-MRc (P = 0.012). In cases with esotropia of ≥123Δ, final residual esotropia in the Nishida-MRc without Ts (12.40Δ ± 8.30Δ) and U-MRc-Ts (19.75Δ ± 18.62Δ) groups was significantly lower (P = 0.019) than in the U-MRc without Ts group (63.40Δ ± 40.83Δ), and the average correction of esotropia was significantly greater (P = 0.014). CONCLUSIONS: In our study cohort, Nishida-MRc produced a greater effect in the treatment of MSF than U-MRc.
Assuntos
Miopia , Músculos Oculomotores , Procedimentos Cirúrgicos Oftalmológicos , Estrabismo , Visão Binocular , Humanos , Músculos Oculomotores/cirurgia , Músculos Oculomotores/fisiopatologia , Procedimentos Cirúrgicos Oftalmológicos/métodos , Masculino , Estudos Retrospectivos , Feminino , Estrabismo/cirurgia , Estrabismo/fisiopatologia , Adulto , Pessoa de Meia-Idade , Visão Binocular/fisiologia , Miopia/cirurgia , Miopia/fisiopatologia , Movimentos Oculares/fisiologia , Adulto Jovem , Técnicas de Sutura , Resultado do Tratamento , Seguimentos , Idoso , AdolescenteRESUMO
Despite increasing waste-to-energy (WtE) capacities, there remain deficiencies in comprehension of 136 kinds of tetra- through octa-chlorinated dibenzo-p-dioxin and dibenzofurans (136 PCDD/Fs) originating from incineration sources. Samples from twenty typical WtE plants, encompassing coal-fired power plants (CPP), grate incinerators (GI), fluidized bed incinerators (FBI), and rotary kilns (RK), yielded extensive PCDD/F datasets. Research was conducted on fingerprint mapping, formation pathways, emission profiles, and diagnostic analysis of PCDD/Fs in WtE plants. Fingerprints revealed a prevalence of TCDF, followed by PeCDF, while CPP and RK respectively generated more PCDD and HxCDD. De novo synthesis was the predominant formation pathway except one plant, where CP-route dominated. DD/DF chlorination also facilitated PCDD/F formation, showing general trends of FBI > GI > CPP > RK. The PCDD/F emission intensities emitted in air pollution control system inlet (APCSI) and outlet (APCSO) followed the statistical sequence of RK > FBI > GI > CPP, with the average I-TEQ concentrations in APCSO reaching 0.18, 0.08, 0.11, and 0.04 ng I-TEQ·Nm-3. Emission spectrum were accordingly formed. Four clusters were segmented for diagnosis analysis, where PCDD/Fs in GI and FBI were similar, grouped as a single cluster. PCDD/Fs in CPP and RK demonstrated distinctive features in TCDD, HxCDD, and HxCDF. The WtE plants exceeding the limit value tended to generate and retain fewer TCDD and TCDF yet had higher fractions of HxCDD and HxCDF. The failure of APCS coupled with the intrinsic source strength of PCDD/Fs directly led to exceedance, highlighting safe operational practices. This study motivated source tracing and precise evaluation of 136 PCDD/Fs based on the revealed fingerprint profiles for WtE processes.
Assuntos
Poluentes Atmosféricos , Dioxinas , Monitoramento Ambiental , Incineração , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Dioxinas/análise , Centrais Elétricas , Dibenzodioxinas Policloradas/análise , Benzofuranos/análiseRESUMO
Current electrically heated fabrics provide heat in cold climates, suffer from abundant wasted radiant heat energy to the external environment, and are prone to damage by water. Thus, constructing energy-efficient and superhydrophobic conductive fabrics is in high demand. Therefore, we propose an effective and facile methodology to prepare a superhydrophobic, highly conductive, and trilayered fabric with a connected carbon nanotube (CNT) layer and a titanium dioxide (TiO2) nanoparticle heat-reflecting layer. We construct polyamide/fluorinated polyurethane (PA/FPU) nanofibrous membranes via first electrospinning, then performing blade-coating with the polyurethane (PU) solution with CNTs, and finally fabricating FPU/TiO2 nanoparticles via electrospraying. This strategy causes CNTs to be connected to form a conductive layer and enables TiO2 nanoparticles to be bound together to form a porous, heat-reflecting layer. As a consequence, the as-prepared membranes demonstrate high conductivity with an electrical conductivity of 63 S/m, exhibit rapid electric-heating capacity, and exhibit energy-efficient asymmetrical heating behavior, i.e., the heating temperature of the PA/FPU nanofibrous layer reaches more than 83 °C within 90 s at 24 V, while the heating temperature of the FPU/TiO2 layer only reaches 53 °C, as well as prominent superhydrophobicity with a water contact angle of 156°, indicating promising utility for the next generation of electrical heating textiles.