Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410979, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967363

RESUMO

Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd1-NiGa catalyst for alkyne semi-hydrogenation. The fabricated Pd1Ni2Ga1 ensemble sites deliver remarkably higher specific mass activity under superb alkene selectivity of >96 % than the state-of-the-art catalysts under industry-relevant conditions. Integrated experimental and computational studies reveal that the single-atom Pd synergizes with the neighbouring Ni sites to facilitate the σ-adsorption of alkyne and dissociation of hydrogen while suppress the alkene adsorption. Such synergistic effects confer the single-atom Pd on the NiGa intermetallic with a Midas touch for alkyne semi-hydrogenation, providing an effective strategy for stimulating low active Ni-based catalysts for other selective hydrogenations in industry.

2.
J Am Chem Soc ; 146(7): 4993-5004, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38333965

RESUMO

Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations. The engineered NiIn catalyst exhibits >97% selectivity to ethylene and propylene at the full conversion of acetylene and propyne at mild temperature, outperforming the reported Ni-based catalysts and even noble Pd-based ones. Detailed mechanistic studies using theoretical calculations and advanced characterizations elucidate that the atomic-level defined coordination environment of Ni sites and well-designed hybridization of Ni 3d with In 5p orbital determine the semihydrogenation pathway.

3.
Angew Chem Int Ed Engl ; 61(51): e202215225, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36269685

RESUMO

Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e., increasing the distance of adjacent Pd atoms (dPd-a-Pd ) for configuration matching in acetylene semi-hydrogenation against coupling. dPd-a-Pd is identified as a structural descriptor for describing the competitiveness for reaction pathways, and the increased dPd-a-Pd prefers the semi-hydrogenation pathway due to simultaneously promoted C2 H4 desorption and the destabilized transition state of the C2 H3 * coupling. Spectroscopic, kinetics and electronic structure studies reveal that increasing dPd-a-Pd to 3.31 Šdelivers superior selectivity and stability due to energy matching and appropriate hybridization of Pd 4d with In 2s and, especially, 2p orbitals.

4.
J Colloid Interface Sci ; 386(1): 428-40, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22909969

RESUMO

Sulfonated polyethersulfone (SPES) and poly (acrylonitrile-co-acrylic acid-co-vinyl pyrrolidone) (P(AN-AA-VP)), which provided sulfonic acid (-SO(3)H) and carboxylic acid groups (-COOH), respectively, were used to modify polyethersulfone (PES) membrane with a heparin-like surface by blending method. The SPES was prepared by sulfonation of PES using chlorosulfonic acid as the sulfonating agent, while the P(AA-AN-VP) was prepared through a free radical polymerization. The PES and modified PES membranes were prepared by a phase-inversion technique; the modified membranes showed lowered protein (bovine serum albumin, BSA; bovine serum fibrinogen, FBG) adsorption and suppressed platelet adhesion. For the modified membranes, significant decreases in thrombin-antithrombin (TAT) generation, percentage platelets positive for CD62p expression, and the complement activation on C3a and C5a levels were observed compared with those for the pure PES membrane. Due to the similar negatively charged groups as heparin, the modified membranes effectively prolonged the activated partial thromboplastin time (APTT). Furthermore, the modified membranes showed good cytocompatibility. Hepatocytes cultured on the modified materials exhibited improved functional profiles in terms of scanning electron microscope (SEM) observation and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay compared with those on the pure PES membrane. It could be concluded that the modified membranes with sulfonic acid and carboxylic acid groups were endowed with excellent biocompatibility, and the heparin-like surface modification seemed to be a promising approach to improve the biocompatibility of materials.


Assuntos
Materiais Biocompatíveis/química , Heparina/química , Polímeros/química , Sulfonas/química , Adsorção , Animais , Bovinos , Membranas Artificiais , Microscopia Eletrônica de Varredura , Soroalbumina Bovina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA