Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2409261, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092687

RESUMO

The bottom contact in perovskite solar cells (PSCs) is easy to cause deep trap states and severe instability issues, especially under maximum power point tracking (MPPT). In this study, sodium gluconate (SG) is employed to disperse tin oxide (SnO2) nanoparticles (NPs) and regulate the interface contact at the buried interface. The SG-SnO2 electron transfer layer (ETL) enabled the deposition of pinhole-free perovskite films in ambient air and improved interface contact by bridging effect. SG-SnO2 PSCs achieved an impressive power conversion efficiency (PCE) of 25.34% (certified as 25.17%) with a high open-circuit voltage (VOC) exceeding 1.19 V. The VOC loss is less than 0.34 V relative to the 1.53 eV bandgap, and the fill factor (FF) loss is only 2.02% due to the improved contact. The SG-SnO2 PSCs retained around 90% of their initial PCEs after 1000 h operation (T90 = 1000 h), higher than T80 = 1000 h for the control SnO2 PSC. Microstructure analysis revealed that light-induced degradation primarily occurred at the buried holes and grain boundaries and highlighted the importance of bottom-contact engineering.

2.
Angew Chem Int Ed Engl ; : e202412042, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149940

RESUMO

Poor operational stability is a crucial factor limiting the further application of perovskite solar cells (PSCs). Organic semiconductor layers can be a powerful means for reinforcing interfaces and inhibiting ion migration. Herein, two hole-transporting molecules, pDPA-SFX and mDPA-SFX, are synthesized with tuned substituent connection sites. The meta-substituted mDPA-SFX results in a larger dipole moment, more ordered packing, and better charge mobility than pDPA-SFX, accompany with strong interface bonding on perovskite surfaces and suppressed ion motion as well. Importantly, mDPA-SFX-based PSCs exhibit an efficiency that has significantly increased from 22.5% to 24.8% and a module-based efficiency of 19.26% with an active area of 12.95 cm2. The corresponding cell retain 94.8% of its initial efficiency at maximum power point tracking (MPPT) after 1,000 h (T95 = 1,000 h). The MPPT T80 lifetime is as long as 2,238 h. This work illustrates that a small degree of structural variation in organic compounds leaves considerable room for developing new HTMs for light stable PSCs.

3.
Nat Commun ; 15(1): 5899, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003324

RESUMO

Challenges in direct catalytic oxidation of biomass-derived aldehyde and alcohol into acid with high activity and selectivity hinder the widespread biomass application. Herein, we demonstrate that a Pd/Ni(OH)2 catalyst with abundant Ni2+-O-Pd interfaces allows electrooxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with a selectivity near 100 % and 2, 5-furandicarboxylic acid yield of 97.3% at 0.6 volts (versus a reversible hydrogen electrode) in 1 M KOH electrolyte under ambient conditions. The rate-determining step of the intermediate oxidation of 5-hydroxymethyl-2-furancarboxylic acid is promoted by the increased OH species and low C-H activation energy barrier at Ni2+-O-Pd interfaces. Further, the Ni2+-O-Pd interfaces prevent the agglomeration of Pd nanoparticles during the reaction, greatly improving the stability of the catalyst. In this work, Pd/Ni(OH)2 catalyst can achieve 100% 5-hydroxymethylfurfural conversion and >90% 2, 5-furandicarboxylic acid selectivity in a flow-cell and work stably over 200 h under a fixed cell voltage of 0.85 V.

4.
J Phys Chem Lett ; 15(17): 4640-4646, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38647347

RESUMO

Photocatalytic conversions of ethanol to valuable chemicals are significant organic synthesis reactions. Herein, we developed a CuCl2/FeCl3 bimetallic photocatalyst for sustainable dehydration of ethanol to ethylene by recoverable redox cycles. The selectivity of ethylene was 98.3% for CuCl2/FeCl3, which is much higher than that of CuCl2 (34.5%) and FeCl3 (86.5%). Due to the ligand-to-metal charge transfer (LMCT) process involved in generating the liquid products, the CuCl2/FeCl3 catalyst will be reduced to CuCl/FeCl2. Oxygen (O2) is required for the recovery of CuCl2/FeCl3 to avoid exhaustion. The soluble Fe3+/Fe2+ redox species deliver catalyst regeneration properties more efficiently than single metal couples, making a series of redox reactions (Cu2+/Cu+, Fe3+/Fe2+, and O2/ethanol couples) recyclable with synergistic effects. A flow reactor was designed to facilitate the continuous production of ethylene. The understanding of bimetallic synergism and consecutive reactions promotes the industrial application process of photocatalytic organic reactions.

5.
Small ; 20(30): e2312265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415951

RESUMO

The preparation of perovskite components (PbI2 and SnI2) using waste materials is of great significance for the commercialization of perovskite solar cells (PSCs). However, this goal is difficult to achieve due to the purity of the recovered products and the easy oxidation of Sn2+. Here, a simple one-step synthetic process to convert waste Sn-Pb solder into SnI2/PbI2 and then applied as-prepared SnI2/PbI2 to PSCs for high additional value is adopted. During fabrication, Sn-Pb waste solder is also employed to serve as a reducing agent to reduce the Sn4+ in Sn-Pb mixed narrow perovskite precursor and hence remove the deep trap states in perovskite. The target PSCs achieved an efficiency of 21.04%, which is better than the efficiency of the device with commercial SnI2/PbI2 (20.10%). Meanwhile, the target PSC maintained an initial efficiency of 80% even after 800 h under continuous illumination, which is significantly better than commercial devices. In addition, the method achieved a recovery rate of 90.12% for Sn-Pb waste solder, with a lab-grade purity (over 99.8%) for SnI2/PbI2, and the cost of perovskite active layer reduced to 39.81% through this recycling strategy through calculation.

6.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428261

RESUMO

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

7.
Small ; 19(42): e2303821, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37328439

RESUMO

It is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2 S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2 ) evolution. By adjusting the colloidal concentration of ZIS (ZIS-X, X = 0.09, 0.25, or 3.0 mg mL-1 ), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze-drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS-X colloids is evaluated, and the slightly aggregated ZIS-0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m-2 h-1 ). The charge-transfer/recombination dynamics are characterized by time-resolved photoluminescence (TRPL) spectroscopy, and ZIS-0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo-electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.

8.
ACS Nano ; 17(13): 12884-12894, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339159

RESUMO

Surface and interface engineering, especially the creation of abundant Cu0/Cu+ interfaces and nanograin boundaries, is known to facilitate C2+ production during electrochemical CO2 reductions over copper-based catalysts. However, precisely controlling the favorable nanograin boundaries with surface structures (e.g., Cu(100) facets and Cu[n(100)×(110)] step sites) and simultaneously stabilizing Cu0/Cu+ interfaces is challenging, since Cu+ species are highly susceptible to be reduced into bulk metallic Cu at high current densities. Thus, an in-depth understanding of the structure evolution of the Cu-based catalysts under realistic CO2RR conditions is imperative, including the formation and stabilization of nanograin boundaries and Cu0/Cu+ interfaces. Herein we demonstrate that the well-controlled thermal reduction of Cu2O nanocubes under a CO atmosphere yields a remarkably stable Cu2O-Cu nanocube hybrid catalyst (Cu2O(CO)) possessing a high density of Cu0/Cu+ interfaces, abundant nanograin boundaries with Cu(100) facets, and Cu[n(100)×(110)] step sites. The Cu2O(CO) electrocatalyst delivered a high C2+ Faradaic efficiency of 77.4% (56.6% for ethylene) during the CO2RR under an industrial current density of 500 mA/cm2. Spectroscopic characterizations and morphological evolution studies, together with in situ time-resolved attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies, established that the morphology and Cu0/Cu+ interfacial sites in the as-prepared Cu2O(CO) catalyst were preserved under high polarization and high current densities due to the nanograin-boundary-abundant structure. Furthermore, the abundant Cu0/Cu+ interfacial sites on the Cu2O(CO) catalyst acted to increase the *CO adsorption density, thereby increasing the opportunity for C-C coupling reactions, leading to a high C2+ selectivity.

9.
ACS Appl Mater Interfaces ; 15(26): 31584-31594, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339248

RESUMO

Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.

10.
ACS Appl Mater Interfaces ; 15(23): 28036-28043, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253144

RESUMO

The development of single-atom catalysts with effective interfaces for biomass conversion is a promising but challenging research area. In this study, a Ru1/CoOx catalyst was successfully fabricated with the impregnation method, which featured Ru single atoms on a cobalt oxide substrate. The Ru1/CoOx catalyst showed superior performance in the selective electrooxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA), a high value-added product. The introduction of Ru single atoms with an ultralow loading of ∼0.5 wt % was revealed to accelerate the electroredox of Co2+/Co3+/Co4+ and improve the intrinsic activity of the CoOx substrate with an FDCA selectivity of 76.5%, which is better than that of the pristine CoOx electrocatalysts (62.7%). The interfacial synergistic effect of the Ru1/CoOx interface clarified that Ru single atoms can enhance the adsorption of HMF at the Ru1/CoOx interface, which promoted the rate-determining step of the selective C-H bond activation for FDCA production. This finding provides valuable insights into the rational design of single-atom catalysts with functional interfaces for biomass upgrading.

11.
Nanomicro Lett ; 15(1): 125, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188867

RESUMO

Embedding submicrocavities is an effective approach to improve the light out-coupling efficiency (LOCE) for planar perovskite light-emitting diodes (PeLEDs). In this work, we employ phenethylammonium iodide (PEAI) to trigger the Ostwald ripening for the downward recrystallization of perovskite, resulting in spontaneous formation of buried submicrocavities as light output coupler. The simulation suggests the buried submicrocavities can improve the LOCE from 26.8 to 36.2% for near-infrared light. Therefore, PeLED yields peak external quantum efficiency (EQE) increasing from 17.3% at current density of 114 mA cm-2 to 25.5% at current density of 109 mA cm-2 and a radiance increasing from 109 to 487 W sr-1 m-2 with low rolling-off. The turn-on voltage decreased from 1.25 to 1.15 V at 0.1 W sr-1 m-2. Besides, downward recrystallization process slightly reduces the trap density from 8.90 × 1015 to 7.27 × 1015 cm-3. This work provides a self-assembly method to integrate buried output coupler for boosting the performance of PeLEDs.

12.
Small ; 19(29): e2302058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183305

RESUMO

Slow charge kinetics and unfavorable CO2 adsorption/activation strongly inhibit CO2 photoreduction. In this study, a strain-engineered Cs3 Bi2 Br9 /hierarchically porous BiVO4 (s-CBB/HP-BVO) heterojunction with improved charge separation and tailored CO2 adsorption/activation capability is developed. Density functional theory calculations suggest that the presence of tensile strain in Cs3 Bi2 Br9 can significantly downshift the p-band center of the active Bi atoms, which enhances the adsorption/activation of inert CO2 . Meanwhile, in situ irradiation X-ray photoelectron spectroscopy and electron spin resonance confirm that efficient charge transfer occurs in s-CBB/HP-BVO following an S-scheme with built-in electric field acceleration. Therefore, the well-designed s-CBB/HP-BVO heterojunction exhibits a boosted photocatalytic activity, with a total electron consumption rate of 70.63 µmol g-1 h-1 , and 79.66% selectivity of CO production. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy reveals that CO2 photoreduction undergoes a formaldehyde-mediated reaction process. This work provides insight into strain engineering to improve the photocatalytic performance of halide perovskite.

13.
ACS Appl Mater Interfaces ; 15(22): 26778-26786, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219503

RESUMO

The performance of the blue perovskite light-emitting diodes (PeLEDs) is limited by the low photoluminescence quantum yields (PLQYs) and the unstable emission centers. In this work, we incorporate sodium bromide and acesulfame potassium into a quasi-2D perovskite to control the dimension distribution and promote the PLQYs. Benefiting from the efficient energy cascade channel and passivation, the sky-blue PeLED has an external quantum efficiency of 9.7% and no shift of the electroluminescence center under operation voltages from 4 to 8 V. Moreover, the half lifetime of the devices reaches 325 s, 3.3 times that of control devices without additives. This work provides new insights into enhancing the performance of blue PeLEDs.

14.
Small ; 19(28): e2301289, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974590

RESUMO

The electrocatalytic CO2 reduction reaction (CO2 RR) is an attractive technology for CO2 valorization and high-density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2 RR at high current densities (>500 mA cm-2 ) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid-gas-liquid interfaces on gas-diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2 RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuOC(O)) hybrid. Owing to abundant CuOC interfaces in the CuOC(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+ /Cu0 interfaces during the electroreduction step, the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene  ≈ 60%) at 500 mA cm-2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0 /Cu+ interfaces in the reduced CuOC(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating CC coupling reactions.

15.
Adv Mater ; 35(26): e2300503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36995983

RESUMO

Inorganic CsSnI3 with low toxicity and a narrow bandgap is a promising photovoltaic material. However, the performance of CsSnI3 perovskite solar cells (PSCs) is much lower than that of Pb-based and hybrid Sn-based (e.g., CsPbX3 and CH(NH2 )2 SnX3 ) PSCs, which may be attributed to its poor film-forming property and the deep traps induced by Sn4+ . Here, a bifunctional additive carbazide (CBZ) is adapted to deposit a pinhole-free film and remove the deep traps via two-step annealing. The lone electrons of the NH2 and CO units in CBZ can coordinate with Sn2+ to form a dense film with large grains during the phase transition at 80 °C. The decomposition of CBZ can reduce Sn4+ to Sn2+ during annealing at 150 °C to remove the deep traps. Compared with the control device (4.12%), the maximum efficiency of the CsSnI3 :CBZ PSC reaches 11.21%, which is the highest efficiency of CsSnI3 PSC reported to date. A certified efficiency of 10.90% is obtained by an independent photovoltaic testing laboratory. In addition, the unsealed CsSnI3 :CBZ devices maintain initial efficiencies of ≈100%, 90%, and 80% under an inert atmosphere (60 days), standard maximum power point tracking (650 h at 65 °C), and ambient air (100 h), respectively.

16.
J Phys Chem Lett ; 14(11): 2750-2757, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36897319

RESUMO

Biomass ethanol is regarded as a renewable resource but it is not economically viable to transform it to high-value industrial chemicals at present. Herein, a simple, green, and low-cost CuCl2-ethanol complex is reported for ethanol dehydration to produce ethylene and acetal simultaneously with high selectivity under sunlight irradiation. Under N2 atmosphere, the generation rates of ethylene and acetal were 165 and 3672 µmol g-1 h-1, accounting for 100% in gas products and 97% in liquid products, respectively. An outstanding apparent quantum yield of 13.2% (365 nm) and the maximum conversion rate of 32% were achieved. The dehydration reactions start from the photoexcited CuCl2-ethanol complex, and then go through the energy transfer (EnT) and ligand to metal charge transfer (LMCT) mechanisms to produce ethylene and acetal, respectively. The formation energies of the CuCl2-ethanol complex and the key intermediate radicals (e.g., ·OH, CH3CH2·, and CH3CH2O·) were validated to clarify the mechanisms. Different from previous CuCl2-based oxidation and addition reactions, this work is anticipated to supply new insights into the dehydration reaction of ethanol to produce useful chemical feedstocks.

17.
Small ; 19(20): e2207769, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36799192

RESUMO

The rolling-off phenomenon of device efficiency at high current density caused by quenching of luminescence in perovskite light-emitting diodes (PeLED) is challenging to be solved. Here, 2-amino-5-iodopyrazine (AIPZ) is dissolved in a mixed solvent of chlorobenzene (CB)/isopropanol (IPA) (7:3 volume ratio) for surface post-treatment of FAPbI3 perovskite film. The interaction of AIPZ and perovskite surface not only balances the charge injection but also passivates defects to enhance radiative recombination in PeLED. Therefore, the PeLED champion yields peak external quantum efficiency reaching 23.2% at the current density of 45 mA cm-2 with a radiance brightness of 290 W sr-1 m-2 . More importantly, the rolling-off of device efficiency is significantly reduced. The lowest rolling-off devices can maintain 80% of peak EQE (22.1%) at a high current density of 460 mA cm-2 , whereas the control device only retains 25% of the peak EQE value. This work provides an effective strategy to improve performance and reduce the EQE rolling-off of PeLED for practical application.

18.
Small Methods ; 7(3): e2201467, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36631288

RESUMO

Post-treatment is an essential passivation step for the state-of-the-art perovskite solar cells (PSCs) but the additional role is not yet exploited. In this work, perovskite film is fabricated under ambient air with wide humidity window and identify that chloride redistribution induced by post-treatment plays an important role in high performance. The chlorine/iodine ratio on the perovskite surface increases from 0.037 to 0.439 after cyclohexylmethylammonium iodide (CHMAI) treatment and the PSCs deliver a champion power conversion efficiency (PCE) of 24.42% (certificated 23.60%). The maximum external quantum efficiency of electroluminescence (EQEEL ) reaches to 10.84% with a radiance of 170 W sr-1  m-2 , forming the reciprocity relation between EQEEL and nonradiative open-circuit voltage loss (86.0 mV). After thermal annealing, 2D component of perovskite will increase while chloride decline, leading to improved photovoltage but reduced fill factor. Hence, it distinguishes that chloride enrichment can improve charge transport/recombination simultaneously and 2D passivation can suppress the nonradiative recombination. Moreover, CHMAI can leverage their roles in charge transport/recombination for better performance than phenylethylammonium iodide (Cl/I = 0.114, PCE = 23.32%), due to the stronger binding energy of Cl- . This work provides the insight that the chloride fixation can improve the photovoltaic performance.

19.
ACS Nano ; 17(3): 2802-2812, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700840

RESUMO

An electron-transport layer with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). In addition, interface stress and lattice distortion are inevitable during the crystallization process of perovskite. Herein, IT-4F is introduced into PSCs at the buried SnO2 and perovskite interface, which assists in releasing the residual stress in the perovskite layer. Meanwhile, the work function of SnO2/IT-4F is lower than that of SnO2, which facilitates charge transfer from perovskite to ETL and consequently leads to a significant improvement in the power conversion efficiency (PCE) to 23.73%. The VOC obtained is as high as 1.17 V, corresponding to a low voltage deficit of 0.38 V for a 1.55 eV bandgap. Consequently, the device based on IT-4F maintains 94% of the initial PCE over 2700 h when stored in N2 and retains 87% of the initial PCE after operation for 1000 h.

20.
Nanomicro Lett ; 15(1): 23, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580117

RESUMO

After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA