Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 1043412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619650

RESUMO

Background: Endoscopic disease activity monitoring is important for the long-term management of patients with ulcerative colitis (UC), there is currently no widely accepted non-invasive method that can effectively predict endoscopic disease activity. We aimed to develop and validate machine learning (ML) models for predicting it, which are desired to reduce the frequency of endoscopic examinations and related costs. Methods: The patients with a diagnosis of UC in two hospitals from January 2016 to January 2021 were enrolled in this study. Thirty nine clinical and laboratory variables were collected. All patients were divided into four groups based on MES or UCEIS scores. Logistic regression (LR) and four ML algorithms were applied to construct the prediction models. The performance of models was evaluated in terms of accuracy, sensitivity, precision, F1 score, and area under the receiver-operating characteristic curve (AUC). Then Shapley additive explanations (SHAP) was applied to determine the importance of the selected variables and interpret the ML models. Results: A total of 420 patients were entered into the study. Twenty four variables showed statistical differences among the groups. After synthetic minority oversampling technique (SMOTE) oversampling and RFE variables selection, the random forests (RF) model with 23 variables in MES and the extreme gradient boosting (XGBoost) model with 21 variables in USEIS, had the greatest discriminatory ability (AUC = 0.8192 in MES and 0.8006 in UCEIS in the test set). The results obtained from SHAP showed that albumin, rectal bleeding, and CRP/ALB contributed the most to the overall model. In addition, the above three variables had a more balanced contribution to each classification under the MES than the UCEIS according to the SHAP values. Conclusion: This proof-of-concept study demonstrated that the ML model could serve as an effective non-invasive approach to predicting endoscopic disease activity for patients with UC. RF and XGBoost, which were first introduced into data-based endoscopic disease activity prediction, are suitable for the present prediction modeling.

2.
BMC Gastroenterol ; 21(1): 254, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112087

RESUMO

BACKGROUND: Epstein-Barr virus (EBV)-associated NK/T-cell lymphoproliferative disorder (LPD) involving the gastrointestinal tract is rarely observed in individuals with normal immunity. The atypical clinical, colonoscopic manifestations often confuse clinicians, leading to misdiagnosis and delays in the treatment. CASE PRESENTATION: Herein, we reported on a single case of a patient with gastrointestinal symptoms. Several colonoscopies showed multiple irregular ulcerations, while biopsies showed colitis with infiltration of neutrophils or lymphocytes. After 2 months follow-up, the patient was diagnosed with the extranodal NK/T-cell lymphoma, nasal type, and was treated with thalidomide. Later on, a second check was performed on his first pathological sample. Immunohistochemistry revealed EBV associated NK/T-cell LPD. CONCLUSIONS: Multiple, multiform, and segmental gastrointestinal ulcers should be an indication for EBV infection, regardless of the presence of fever, lymphadenopathy, and hepatosplenomegaly. If EBV-associated NK/T-cell LPD is considered, serum EBV-DNA should be measured, and the tissue obtained by biopsy should be carefully analyzed for a positive expression of the EBER marker.


Assuntos
Infecções por Vírus Epstein-Barr , Gastroenteropatias , Transtornos Linfoproliferativos , Células T Matadoras Naturais , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Humanos , Transtornos Linfoproliferativos/diagnóstico
3.
Physiol Mol Biol Plants ; 26(11): 2189-2197, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33268922

RESUMO

The clade A members of serine/threonine protein phosphatase 2Cs (PP2Cs) play crucial roles in plant growth, development, and stress response via the ABA signaling pathway. But little is known about other PP2C clades in plants. Our previous study showed that maize the ZmPP2C26, a clade B member of ZmPP2Cs, negatively regulated drought tolerance in transgenic Arabidopsis. However, the upstream regulatory mechanism of ZmPP2C26 remains unclear. In the present study, the expression of ZmPP2C26 gene in maize was analyzed by quantitative real time PCR (qRT-PCR). The results showed that the expression of ZmPP2C26 in shoot and root was both significantly inhibited by drought stress. Subsequently, a 2175 bp promoter of ZmPP2C26 was isolated from maize genome (P 2175). To validate whether the promoter possess some key cis-element and negatively drive ZmPP2C26 expression in drought stress, three 5´-deletion fragments of 1505, 1084 and 215 bp was amplified from P 2175 and were fused to ß-glucuronidase (GUS) and luciferase gene (LUC) to produce promoter::GUS and promoter::LUC constructs, and transformed into tobacco, respectively. Transient expression assays indicated that all promoters could drive GUS and LUC expression. The GUS and LUC activity were both significantly inhibited by PEG-6000 treatment. Notably, the - 1084 to - 215 bp promoter possess one MBS element and inhibits the expression of GUS and LUC under drought stress. Meanwhile, we found that the 215 bp length is enough to drive ZmPP2C26 expression. These findings will provide insights into understanding the transcription-regulatory mechanism of ZmPP2C26 negatively regulating drought tolerance.

4.
J Nanosci Nanotechnol ; 20(3): 1504-1510, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492313

RESUMO

This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).


Assuntos
Implantes Absorvíveis , Ligas , Parafusos Ósseos , Corrosão , Teste de Materiais
5.
J Nanosci Nanotechnol ; 20(3): 1605-1612, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492322

RESUMO

The present study focuses on the microstructural and bioactive properties evolution in selective laser melting (SLM) ß titanium alloys. We have applied cross-scan strategy for improving mechanical properties and lower elastic modulus of SLMed Ti-20Mg-5Ta alloys which has been shown to be altering the microstructure and refining the grain size. The cross-scan strategy can refine the microstructure and induce various deformation textures in contrast to the conventional scan strategy. The microstructures of Ti-20Mg-5Ta alloys indicate that the cross-scan strategy will yield the best mechanical properties and lower elastic modulus. The corrosion behavior of the Ti-20Mg-5Ta alloys was studied during immersion in an acellular simulated body fluid (SBF) at 37±0.50 °C for 28 days. Both the mechanical and bioactive properties showed that the novel Ti-20Mg-5Ta alloys should be ideal for bone implants.


Assuntos
Ligas , Titânio , Corrosão , Módulo de Elasticidade , Lasers , Teste de Materiais
6.
Nanomaterials (Basel) ; 9(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861052

RESUMO

In this paper, a novel Ti-doped hierarchically mesoporous silica microspheres/tungsten oxide (THMS/WO3) hybrid film was prepared by simultaneous electrodeposition of Ti-doped hierarchically mesoporous silica microspheres (THMSs) and WO3 nanocrystallines onto the fluoride doped tin dioxide (FTO) coated glass substrate. It is demonstrated that the incorporation of THMSs resulted in the hybrid film with improved electrochromic property. Besides, the content of THMSs plays an important role on the electrochromic property of the hybrid film. An excellent electrochromic THMS/WO3 hybrid film with good optical modulation (52.00% at 700 nm), high coloration efficiency (88.84 cm2 C-1 at 700 nm), and superior cycling stability can be prepared by keeping the weight ratio of Na2WO4·2H2O (precursor of WO3):THMSs at 15:1. The outstanding electrochromic performances of the THMS/WO3 hybrid film were mainly attributed to the porous structure, which facilitates the charge-transfer, promotes the electrolyte infiltration and alleviates the expansion of the film during Li+ insertion. This kind of porous THMS/WO3 hybrid film is promising for a wide range of applications in smart homes, green buildings, airplanes, and automobiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA