Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998163

RESUMO

With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses of gold nanoparticles/porous carbon (Au NPs/PC) nanocomposites prepared by the reduction method were studied using the nanosecond Z-scan technique. Compared with porous carbon, the Au NPs/PC nanocomposites show a lower damage threshold, a bigger optical limiting index and a wider absorption spectrum. The interaction between gold nanoparticles and porous carbon enhances the nonlinear scattering effect of suspended bubbles. These results indicate that Au NPs composites have potential applications in the protection of human eyes and detectors.

2.
Adv Sci (Weinh) ; 11(31): e2403334, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884140

RESUMO

Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.

3.
Opt Express ; 32(11): 19458-19466, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859080

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has been proven to be a candidate in photodetectors, and MoS2/lead sulfide (PbS) quantum dots (QDs) heterostructure has been used to expand the optical response wavelength of MoS2. Time-resolved pump-probe transient absorption measurements are performed to clarify the carrier transfer dynamics in the MoS2/PbS heterostructure. By comparing the carrier dynamics in MoS2 and MoS2/PbS under different pump wavelengths, we found that the excited electrons in PbS QDs can transfer rapidly (<100 fs) to MoS2, inducing its optical response in the near-infrared region, although the pump light energy is lower than the bandgap of MoS2. Besides, interfacial excitons can be formed in the heterostructure, prolonging the lifetime of the excited carriers, which could be beneficial for the extraction of the carriers in devices.

4.
Small Methods ; : e2400241, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644347

RESUMO

All-inorganic lead halide perovskite nanocrystals (NCs) have been widely applied in optoelectronic devices owing to their excellent photoluminescence (PL) properties. However, poor stability upon exposure to water, UV light or heat strongly limits their practical application. Herein, CsPbBr3@Pb-MOF composites with exceptional stability against water, UV light, and heat are synthesized by ultrasonic processing the precursors of lead-based MOF (Pb-MOF), oleylammonium bromide (OAmBr) and cesium oleate (Cs-OA) solutions at room temperature. Pb-MOF can not only provide the lead source for the in situ growth of CsPbBr3 NCs, but also the protective layer of perovskites NCs. The formed CsPbBr3@Pb-MOF composites show a considerable PL quantum yield (PLQY) of 67.8%, and can maintain 90% of the initial PL intensity when immersed in water for 2 months. In addition, the outstanding PL stability against UV light and heat is demonstrated with CsPbBr3 NCs synthesized by the conventional method as a comparison. Finally, a green (light-emitting diode) LED is fabricated using green-emitting CsPbBr3@Pb-MOF composites and exhibits excellent stability without packaging when immersed in water for 30 days. This study provides a practical approach to improve the stability in aqueous phase, which may pave the way for future applications for various optoelectronic devices.

5.
Nanomaterials (Basel) ; 14(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535681

RESUMO

With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface area (2.9 × 103 m2/g) using the nanosecond Z-scan technique. Compared to the traditional OL material C60, the porous carbon material shows an excellent broadband limiting effect, and the limiting thresholds correspond to 0.11 J/cm2 for 532 nm and 0.25 J/cm2 for 1064 nm pulses, respectively. The nonlinear scattering experiments showed that the OL behavior was mainly attributed to the nonlinear scattering effect, which is caused by the rapid growth and expansion of bubbles in the dispersion induced by laser irradiation, and the scattered light distribution is consistent with the results of Mie's scattering. These results suggest that porous carbon materials are expected to be applied to the field of laser protection in the future to further protect the human eye and precision optical instruments.

6.
Angew Chem Int Ed Engl ; 63(14): e202319295, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335036

RESUMO

Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.

7.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226829

RESUMO

Energy transfer has been proven to be an effective method to optimize optoelectronic conversion efficiency by improving light absorption and mitigating nonradiative losses. We prepared 2D/3D CsPbBr3 hybrid assemblies at different reaction temperatures using the hot injection method and found that the photoluminescence quantum yields (PLQYs) of these hybrids were greatly enhanced from 53.4% to 72.57% compared with 3D nanocrystals (NCs). Femtosecond transient absorption measurements were used to study the PLQY enhancement mechanisms, and it was found that the hot carrier lifetime improved from 0.36 to 1.88 ps for 2D/3D CsPbBr3 hybrid assemblies owing to the energy transfer from 2D nanoplates to 3D NCs. The energy transfer benefits the excited carrier accumulation and prolonged hot carrier lifetime in 3D NCs in hybrid assemblies, as well as PLQY enhancement in materials.

8.
Opt Lett ; 48(24): 6561-6564, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099799

RESUMO

Photoinduced excited-state carriers can affect both the absorption coefficient and refractive index of materials and influence the performance of photoelectric devices. Femtosecond time-resolved pump-probe transient absorption (TA) spectroscopy is usually used to detect carrier dynamics and excited-state absorption coefficients; however, measurements of transient refractive-index change are still difficult. We propose a method for determining the excited-state refractive-index change using TA microscopy. In TA measurements, a Fabry-Pérot cavity formed by the front and back surfaces of the sample could lead to interference of the probe light. As the wavelength of standing waves in the Fabry-Pérot cavity is closely related to the refractive index, the carrier-induced excited-state refractive-index change was obtained by comparing the transmission probe spectra between the ground and excited states. The proposed method was used to study the dynamics of excited-state refractive-index change in a perovskite film.

9.
Nanomaterials (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836342

RESUMO

Lead halide perovskites (LHPs) have excellent semiconductor properties. They have been used in many applications such as solar cells. Recently, the hot carrier dynamics in this type of material have received much attention as they are useful for enhancing the performance of optoelectrical devices fabricated from it. Here, we study the ultrafast hot carrier dynamics of a single CsPbBr3 microplate using femtosecond Kerr-gated wide-field fluorescence spectroscopy. The transient photoluminescence spectra have been measured under a variety of excitation fluences. The temporal evolution of bandgap renormalization and the competition between hot carrier cooling and the recovery of the renormalized bandgap are clearly revealed.

10.
Angew Chem Int Ed Engl ; 62(36): e202308307, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463122

RESUMO

Achieving both high open-circuit voltage (Voc ) and short-circuit current density (Jsc ) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (Eloss ) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D1 AD2 (D1 =thieno[3,2-b]thiophene and D2 =selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high Voc and Jsc , due to the reduced Eloss and efficient charge transfer properties. Inspired by the high Voc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized Eloss , the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.

11.
J Chem Phys ; 157(16): 164704, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319428

RESUMO

Nonlinear optical limiting (OL) properties of carboxyl-functionalized Ti3C2 nanosheets (COOH-MXene) were studied using the nanosecond laser Z-scan technology. COOH-MXene showed excellent broadband OL properties with OL thresholds of 0.34 J/cm2 at 532 nm and 0.58 J/cm2 at 1064 nm, and the OL mechanism was mainly attributed to the reverse saturable absorption effect. Femtosecond time-resolved transient absorption measurements were used to clarify the ultrafast carrier dynamics in the OL process, and the results revealed that excited states absorption (ESA) in MXene was enhanced by introducing more carboxyl group terminations. When COOH-MXene was irradiated by laser pulses, excited electrons in the conduction band of MXene could transfer to the carboxyl groups and induce the ESA in the surface functional groups, resulting in the excellent OL property of COOH-MXene.

12.
J Phys Chem Lett ; 13(16): 3674-3681, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35438498

RESUMO

Utilization of triplet excitons, which generally emit poorly, is always fundamental to realize highly efficient organic light-emitting diodes (LEDs). While triplet harvest and energy transfer via electron exchange between triplet donor and acceptor are fully understood in doped organic phosphorescence and delayed fluorescence systems, the utilization and energy transfer of triplet excitons in quasi-two-dimensional (quasi-2D) perovskite are still ambiguous. Here, we use an orange-phosphorescence-emitting ultrathin organic layer to probe triplet behavior in the sky-blue-emitting quasi-2D perovskite. The delicate white LED architecture enables a carefully tailored Dexter-like energy-transfer mode that largely harvests the triplet excitons in quasi-2D perovskite. Our white organic-inorganic LEDs achieve maximum forward-viewing external quantum efficiency of 8.6% and luminance over 15 000 cd m-2, exhibiting a significant efficiency enhancement versus the corresponding sky-blue perovskite LED (4.6%). The efficient management of energy transfer between excitons in quasi-2D perovskite and Frenkel excitons in the organic layer opens the door to fully utilizing excitons for white organic-inorganic LEDs.

13.
ACS Appl Mater Interfaces ; 14(7): 9386-9397, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148049

RESUMO

A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).

14.
J Chem Phys ; 156(5): 054702, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135255

RESUMO

The nonlinear optical limiting (OL) property of tin phthalocyanine porous organic frameworks (Sn-Pc-POFs) dispersion in the nanosecond regime was studied, which showed excellent dispersibility and stability as well as a low OL threshold. To clarify the nonlinear optical response mechanisms in the material, the energy level structure of Sn-Pc-POFs was simulated using the density functional theory calculation, and the photoinduced carrier dynamics was studied using femtosecond time-resolved transient absorption spectroscopy. The results indicated that the large absorption cross section and long lifetime of the excited state were responsible for the excellent OL property of the material.

15.
ACS Appl Mater Interfaces ; 14(5): 6945-6957, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35081710

RESUMO

Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.

16.
Angew Chem Int Ed Engl ; 61(15): e202111443, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997699

RESUMO

In photon-conversion processes, rapid cooling of photo-induced hot carriers is a dominant energy loss channel. We herein report a 3-fold reduced hot carrier cooling rate in CsPbBr3 nanocrystals capped with a cross-linked polysiloxane shell in comparison to single alkyl-chain oleylamine ligands. Relaxation of hot charge carriers depends on the carrier-phonon coupling (CPC) process as an important channel to dissipate energies in nanostructured perovskite materials. The CPC strengths in the two samples were measured through cryogenic photoluminescence spectroscopic measurements. The effect of organic ligands on the CPC in CsPbBr3 nanocrystals is elucidated based on a damped oscillation model. This supplements the conventional polaron-based CPC model, by involving a damping effect on the CPC from the resistance of the ligands against nanocrystal lattice vibrations. The model also accounts for the observed linear temperature-dependence of the CPC strength. Our work enables predictions about the effect of the ligands on the performance of perovskite nanocrystals in future applications.

17.
J Phys Chem Lett ; 12(48): 11723-11729, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851112

RESUMO

The role of triplet states in the interfacial energy transfer in perovskite light-emitting diodes (PeLEDs) has so far not been clarified because of the complex exciton recombination and decay dynamics. This work aims to study this issue and accordingly proposes a novel interfacial-engineering strategy for efficient sky-blue PeLEDs. To this end, bis[2-(diphenylphosphino)phenyl]ether oxide with a high triplet energy level is introduced into sky-blue PeLEDs. It effectively reduces undesirable exciton transfer from the perovskite emission layer to the electron-transport layer, largely suppresses exciton quenching at the interface, and simultaneously passivates defects at the perovskite surfaces. As a result of the multichannel energy-loss reduction, sky-blue PeLED that emits at 488 nm is achieved with a peak external quantum efficiency of 10.17% and a maximum brightness of 6728.41 cd m-2. This work thus provides indirect evidence for the triplet mechanism of blue emission of mixed-halide perovskites and sheds new light on a promising way of boosting the performance of blue PeLEDs.

18.
Materials (Basel) ; 14(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34772245

RESUMO

Asymmetric molecule strategy is considered an effective method to achieve high power conversion efficiency (PCE) of polymer solar cells (PSCs). In this paper, nine oligomers are designed by combining three new electron-deficient units (unitA)-n1, n2, and n3-and three electron-donating units (unitD)-D, E, and F-with their π-conjugation area extended. The relationships between symmetric/asymmetric molecule structure and the performance of the oligomers are investigated using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. The results indicate that asymmetry molecule PEn2 has the minimum dihedral angle in the angle between two planes of unitD and unitA among all the molecules, which exhibited the advantages of asymmetric structures in molecular stacking. The relationship of the values of ionization potentials (IP) and electron affinities (EA) along with the unitD/unitA π-extend are revealed. The calculated reorganization energy results also demonstrate that the asymmetric molecules PDn2 and PEn2 could better charge the extraction of the PSCs than other molecules for their lower reorganization energy of 0.180 eV and 0.181 eV, respectively.

19.
Adv Sci (Weinh) ; 7(23): 2002296, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304761

RESUMO

Usage of nonhalide lead sources for fabricating perovskite solar cells (PSCs) has recently attracted increasing attention as a promising route toward realizing high quality PSC devices. However, the unique role of nonhalide lead sources in improving perovskite film morphology and PSC performance has largely remained unexplored, impeding broader application of these materials. Here, it is demonstrated that by using a new nonhalide lead source, lead formate (Pb(HCOO)2), good control of perovskite film morphology can be achieved. With the usage of lead formate, PbI2 can nicely border the perovskite grain boundaries (GBs) and form domain "walls" that segregate the individual perovskite crystal domains. The PbI2 at the GBs lead to significant improvement in film quality and device performance through passivating the defects at the perovskite GBs and suppressing lateral carrier diffusion. An impressive carrier lifetime at the microsecond scale (τ 2 = 1714 ns) is achieved, further with an optimal power conversion efficiency of 20.3% for the resulting devices. This work demonstrates a promising and effective method toward fabricating high-quality perovskites and high-efficiency PSCs.

20.
ACS Appl Mater Interfaces ; 12(41): 46565-46570, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32946214

RESUMO

Two-dimensional transition-metal-containing polyphthalocyanine conjugated porous frameworks are synthesized, and transition-metal (TM) ions ranging from Fe, Co, Ni, Cu to In are chosen to combine in phthalocyanine centers to tune their delocalized electronic structure. The fully closed planar delocalized π-conjugated frameworks exhibit efficient nonlinear optical absorption and excellent optical limiting performance under ns pulsed laser. The metal ion (Co, Ni) with ferromagnetism in phthalocyanine center manifests its contribution in enhanced nonlinear optical response through resonance enhancement of the nonlinear excited-state absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA