Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 373, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227942

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stage of the dog tapeworm Echinococcus granulosus sensu lato (E. granulosus), with a worldwide distribution. The current treatment strategy for CE is insufficient. Limited drug screening models severely hamper the discovery of effective anti-echinococcosis drugs. METHODS: In the present study, using high-content screening technology, we developed a novel high-throughput screening (HTS) assay by counting the ratio of propidium iodide-stained dead protoscoleces (PSCs) to the total number of PSCs. In vitro and ex vivo cyst viability assays were utilized to determine the effect of drugs on cyst viability. RESULTS: Using the newly established HTS assay, we screened approximately 12,000 clinical-stage or The Food and Drug Administration (FDA)-approved small molecules from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library, as well as the LOPAC1280 and SelleckChem libraries, as a strategic approach to facilitate the drug discovery process. Initial screening yielded 173 compounds with anti-echinococcal properties, 52 of which demonstrated dose-response efficacy against E. granulosus PSCs in vitro. Notably, two agents, omaveloxolone and niclosamide, showed complete inhibition upon further validation in cyst and microcyst viability assays in vitro after incubation for 3 days, and in an ex vivo cyst viability assay using cysts isolated from the livers of mice infected with E. granulosus, as determined by morphological assessment. CONCLUSIONS: Through the development of a novel HTS assay and by repurposing libraries, we identified omaveloxolone and niclosamide as potent inhibitors against E. granulosus. These compounds show promise as potential anti-echinococcal drugs, and our strategic approach has the potential to promote drug discovery for parasitic infections.


Assuntos
Reposicionamento de Medicamentos , Equinococose , Echinococcus granulosus , Ensaios de Triagem em Larga Escala , Echinococcus granulosus/efeitos dos fármacos , Animais , Ensaios de Triagem em Larga Escala/métodos , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Camundongos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Anti-Helmínticos/farmacologia , Descoberta de Drogas , Cães
2.
Antimicrob Agents Chemother ; 68(3): e0120223, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349157

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. There is an urgent need to develop new drug targets and drug molecules to treat CE. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a serine/threonine protein kinase consisting of α, ß, and γ subunits, plays a key role in the regulation of energy metabolism. However, the role of AMPK in regulating glucose metabolism in E. granulosus s.l. and its effects on parasite viability is unknown. In this study, we found that targeted knockdown of EgAMPKα or a small-molecule AMPK inhibitor inhibited the viability of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure. The results of in vivo experiments showed that the AMPK inhibitor had a significant therapeutic effect on E. granulosus s.s.-infected mice and resulted in the loss of cellular structures of the germinal layer. In addition, the inhibition of the EgAMPK/EgGLUT1 pathway limited glucose uptake and glucose metabolism functions in E. granulosus s.s.. Overall, our results suggest that EgAMPK can be a potential drug target for CE and that inhibition of EgAMPK activation is an effective strategy for the treatment of disease.


Assuntos
Equinococose , Echinococcus granulosus , Parasitos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Zoonoses/parasitologia , Glucose , Genótipo
3.
Drug Des Devel Ther ; 17: 2441-2454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637266

RESUMO

Introduction: Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. The current existing drugs have limited therapeutic efficacy against cystic echinococcosis, and thus, there is an urgent need to develop new drugs. Methods: In this study, 7 harmine (HM) derivatives were screened and the effects of HM derivatives on E. granulosus sensu stricto (s.s.) were evaluated by in vitro and mouse experiments. The safety of the HM derivatives was assessed by cytotoxicity assays, acute toxicity study in animals and subacute toxicity study. Results: These results show that the HM derivatives H-2-168 and DH-004 exhibited more significant antiparasitic effects at an initial concentration of 40 µM. The results of further studies showed that H-2-168 and DH-004 had dose-dependent effects against protoscoleces and had satisfactory therapeutic outcomes in vivo. Electron microscopy observations demonstrated that H-2-168 and DH-004 caused severe disruption of the parasite ultrastructure. Notably, the results of the acute toxicity and subchronic toxicity studies showed that H-2-168 and DH-004 had significantly improved safety. In addition, we found that H-2-168 and DH-004 induced DNA damage in E. granulosus s.s., which may be the mechanism by which these drugs produce their therapeutic effects. Discussion: Overall, the data from this work demonstrate that H-2-168 and DH-004 are highly effective candidate compounds with low toxicity for the treatment of CE and will provide a new therapeutic strategy for CE pharmacological treatment.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Camundongos , Harmina/farmacologia , Equinococose/tratamento farmacológico , Antiparasitários , Dano ao DNA
4.
Clin Respir J ; 17(6): 568-579, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37157161

RESUMO

OBJECTIVE: This study investigated the relationship between the glucocorticoid-induced transcript 1 (GLCCI1) gene variant and the degree of improvement in lung function with inhaled corticosteroids (ICS). METHODS: We searched the PubMed, Embase, Cochrane Library, CBM, CNKI and Wanfang databases to obtain studies on the GLCCI1 rs37973 variant and the efficacy of ICS in asthma. RESULTS: The overall meta-analysis showed that patients with the GG phenotype (mutant homozygotes) exhibited significantly smaller forced expiratory volume in 1 sec (FEV1) change than patients with the AG phenotype (mutant heterozygous) (MD = -0.08, 95% CI [-0.12, -0.03], P = 0.001). Compared with the AA phenotype (wild homozygotes), the GG phenotype (MD = -4.23, 95% CI [-6.09, -2.38], P < 0.00001) and AG phenotype (MD = -1.92, 95% CI [-2.35, -1.49], P < 0.00001) had significantly smaller FEV1%pred changes. The FEV1 change subgroup analysis showed that the GG phenotype group was smaller than the AA phenotype group at 8 (MD = -0.53, 95% CI [-0.91, -0.14], P = 0.007), 12 (MD = -0.16, 95% CI [-0.30, -0.02], P = 0.02) and 24 (MD = -0.09, 95% CI [-0.17, -0.01], P = 0.02) weeks of treatment; the GG phenotype group was smaller than the AG phenotype group at 12 weeks (MD = -0.08, 95% CI [-0.15, -0.01], P = 0.02). CONCLUSION: This meta-analysis suggests that the GLCCI1 rs37973 variant affects the efficacy of ICS and that the presence of the G allele attenuates the improvement in lung function with ICS.


Assuntos
Antiasmáticos , Asma , Humanos , Receptores de Glucocorticoides/genética , Genótipo , Asma/tratamento farmacológico , Asma/genética , Corticosteroides/uso terapêutico , Glucocorticoides/uso terapêutico , Administração por Inalação
5.
Acta Trop ; 238: 106802, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565837

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease with a cosmopolitan distribution, and it is urgent to develop novel anti-helminthic agents. The intraperitoneal (ip) infection mice model was widely used to evaluate the efficacy of potential anti-CE compounds. Still, it's time-consuming, and the inability to achieve real-time monitoring hinders the development of potential anti-CE compounds. In this study, a CE mouse model was established by subcutaneous (sc) injection of protoscoleces of Echinococcus granulosus sensu stricto (E.granulosus s.s.) and used to assess the efficiency and efficacy of prospective anti-CE drugs. Compared to the ip infection CE mice model, the lesion volume of sc infection protoscoleces of E.granulosus s.s. (EgPSCs) could be measured by vernier caliper at week 6 post-infection. In contrast, the lesion volume of ip infection CE mice model was detected by ultrasound-assisted diagnosis at week 16 post-infection. Oral administration of albendazole (ABZ) could reduce cystic weight by 32.17% and 17.61%, the cystic number by 12.24% and 25.19%, and damage the ultrastructure of the cysts of E. granulosus s.s. in the sc and ip infection group, respectively. Furthermore, we found that the sc infection mice model could real-time monitor the lesion volume of E. granulosus s.s. during the ABZ and everolimus treatment. Therefore, we consider that the sc infection CE mice model is an assistant tool for screening and developing potential anti-CE compounds.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Camundongos , Preparações Farmacêuticas , Equinococose/parasitologia , Albendazol/uso terapêutico , Administração Oral , Zoonoses/tratamento farmacológico , Modelos Animais de Doenças
6.
Nat Commun ; 13(1): 5410, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109519

RESUMO

The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V-1 s-1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V-1 s-1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics.

7.
J Vet Med Sci ; 84(3): 465-472, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35125374

RESUMO

Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by infection with the larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. Currently, new drugs are urgently required due to the poor therapeutic effect of the existing drugs albendazole and mebendazole. Capparis spinosa, a traditional medicinal plant, has potential therapeutic effects on various diseases based on extracts from its fruit and other parts. The results of this study demonstrated that the water-soluble and ethanolic extracts of C. spinosa fruit had in vitro killing effects on the larvae of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure of protoscoleces and metacestodes. In vitro cytotoxicity assays showed that the water-soluble and ethanolic extracts of C. spinosa fruit were not significantly toxic to primary mouse hepatocytes at an effective dose to CE. In conclusion, water-soluble and ethanolic extracts of C. spinosa fruit have great potential for the development of new drugs for the treatment of CE.


Assuntos
Capparis , Equinococose , Echinococcus granulosus , Doenças dos Roedores , Animais , Equinococose/tratamento farmacológico , Equinococose/veterinária , Genótipo , Larva , Camundongos , Zoonoses/parasitologia
8.
Front Cell Infect Microbiol ; 11: 747739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858873

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by infection with the larvae of Echinococcus granulosus sensu lato (s.l.) cluster. It is urgent to identify novel drug targets and develop new drug candidates against CE. Glucose transporter 1 (GLUT1) is mainly responsible for the transmembrane transport of glucose to maintain its constant cellular availability and is a recent research hotspot as a drug target in various diseases. However, the role of GLUT1 in E. granulosus s.l. (EgGLUT1) was unknown. In this study, we cloned a conserved GLUT1 homology gene (named EgGLUT1-ss) from E. granulosus sensu stricto (s.s.) and found EgGLUT1-ss was crucial for glucose uptake and viability by the protoscoleces of E. granulosus s.s. WZB117, a GLUT1 inhibitor, inhibited glucose uptake by E. granulosus s.s. and the viability of the metacestode in vitro. In addition, WZB117 showed significant therapeutic activity in E. granulosus s.s.-infected mice: a 10 mg/kg dose of WZB117 significantly reduced the number and weight of parasite cysts (P < 0.05) as efficiently as the reference drug, albendazole. Our results demonstrate that EgGLUT1-ss is crucial for glucose uptake by the protoscoleces of E. granulosus s.s., and its inhibitor WZB117 has a therapeutic effect on CE.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Equinococose/tratamento farmacológico , Echinococcus granulosus/genética , Genótipo , Larva , Camundongos , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA