RESUMO
With the rapid growth of global plastic production, the degradation of microplastics (MPs) has received widespread attention, and the search for efficient biodegradation pathways has become a hot topic. The aim of this study was to screen mangrove sediment and surface water for bacteria capable of degrading polyethylene (PE) and polypropylene (PP) MPs. In this study, two strains of PE-degrading bacteria and two strains of PP-degrading candidate bacteria were obtained from mangrove, named Pseudomonas sp. strain GIA7, Bacillus cereus strain GIA17, Acinetobacter sp. strain GIB8, and Bacillus cereus strain GIB10. The results showed that the degradation rate of the bacteria increased gradually with the increase in degradation time for 60 days. Most of the MP-degrading bacteria had higher degradation rates in the presence of weak acid. The appropriate addition of Mg2+ and K+ was favorable to improve the degradation rate of MPs. Interestingly, high salt concentration inhibited the biodegradation of MPs. Results of scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) indicated the degradation and surface changes of PP and PE MPs caused by candidate bacteria, which may depend on the biodegradation-related enzymes laccase and lipase. Our results indicated that these four bacterial strains may contribute to the biodegradation of MPs in the mangrove environment.
RESUMO
Pseudomonas Stutzeri (P. stutzeri) is a denitrifying bacterium that is essential in biological nitrogen removal. To study the interaction between P. stutzeri and polystyrene nanoplastics (PS-NPs), the effects of PS-NPs posed on P. stutzeri were evaluated in terms of bacterial growth, physiology, denitrification function and extracellular polymers (EPS) secretion. Results of confocal laser scanning microscopy (LCSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and flow cytometry confirmed that PS-NPs were trapped by P. stutzeri. Exposure to PS-NPs inhibited bacterial growth and expression of denitrification-related genes, but unaffected the denitrifying enzyme activities. The enhanced secretion of EPS caused PS-NPs and bacterial aggregation. And the enzyme activity of SOD in P. stutzeri was increased while that of CAT was decreased. The results of flow cytometry showed that high concentrations of PS-NPs increased the complexity of P. stutzeri cells. These results reveal that P. stutzeri may be affected after trapping PS-NPs and alter their environmental fate as well. SYNOPSIS: This study contributes to the understanding of the possible effect of P. stutzeri on the distribution of PS-NPs and illustrates the potential impact of PS-NPs on P. stutzeri.
RESUMO
Tea, sold as tea bags or loose tea, is a popular drink worldwide. We quantified microplastics in loose tea during various stages of production, from planting to processing and brewing. The quantity of microplastics in tea ranged from (70-3472 pcs/kg), with the highest abundance detected during processing, mainly in the rolling stage (2266 ± 1206 pcs/kg tea). Scanning electron microcopy revealed scratches and pits on the surface of microplastics fibers from tea plantation soil and processed tea, and their degradation was characterized by cracks and fractures. Exposure risks, based on an estimated dietary intake of 0.0538-0.0967 and 0.0101-0.0181 pcs /kg body weight /day for children and adults, respectively, are considered very low. This study not only evaluates the extent of research on microplastics pollution in tea, but also assess the risk of people's exposure to microplastics through drinking tea.
Assuntos
Exposição Dietética , Contaminação de Alimentos , Microplásticos , Chá , Chá/química , Exposição Dietética/análise , Microplásticos/análise , Contaminação de Alimentos/análise , Humanos , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Medição de Risco , Poluentes do Solo/análise , Poluentes do Solo/químicaRESUMO
Plastics are commonly used by society and their break down into millimeter-sized bits known as microplastics (MPs). Due to the possibility of exposure, reports of them in atmospheric deposition, indoor, and outdoor air have sparked worry for public health. In tropical and subtropical regions all throughout the world, mangroves constitute a distinctive and significant type of coastal wetlands. Mangrove plants are considered to have the effect of accumulating sediment MPs, but the sedimentation of atmospheric MPs has not been reported. In this study, we illustrated the characteristics, abundance and spatial distribution of MPs in different species of mangrove leaves along the Seagull Island in Guangzhou. MPs samples from leaves in five species showed various shapes, colors, compositions, sizes and abundance. Acanthus ilicifolius had an average fallout rate of 1223 items/m2/day which has the highest abundance of MPs in all samples. Four shapes of MPs were found in all leaves surfaces including fiber, fragment, pellet, and film, with fiber is the most. The dominant types of MPs in all leaves were cellulose and rayon. Most of the total MPs size were smaller than 2 mm. Clearly, the microstructures of each species leaf surfaces had an impact on its ability to retain MPs. The plants rough blade surfaces and big folds or gullies caused more particles to accumulate and had a higher MPs retention capacity. Overall, our study contributes to a better knowledge of the condition of MPs pollution in atmosphere and the connection between leaves structure and the retention of MPs, which indicates that mangrove plants are promising bioindicator of coastal atmospheric MPs pollution.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Biomarcadores Ambientais , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.
Assuntos
Membrana Basal , Células Endoteliais , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Iridoviridae/fisiologia , Vasos Linfáticos/citologia , Proliferação de Células , Movimento Celular , Vasos Sanguíneos/citologia , Interações entre Hospedeiro e MicrorganismosRESUMO
Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.
Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Daphnia , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Poliestirenos/metabolismo , Bactérias , Poluentes Químicos da Água/análiseRESUMO
In this study, the occurrence and removal of ten selected antibiotics from aquaculture wastewater by the process solar + Fe(VI)+oxone were investigated. The detection levels of the antibiotics in the aquaculture wastewater samples were at ng/L. The degradation of the selected antibiotics under the process solar + Fe(VI)+oxone followed pseudo-first-order kinetics. As the most abundant antibiotic in the studied aquaculture wastewater, norfloxacin (NFX) was used as the model compound to study the reaction mechanism and detoxification ability of the treatment system, as well as the effects of reaction parameters and environmental factors. The active species including O2â¢-, O21, and Fe(V)/Fe(IV) contributed to NFX degradation in the process solar + Fe(VI)+oxone. Decarboxylation, the piprazine ring opening, defluorination of the benzene ring, oxygen addition and the cleavage of the quinolone/benzene ring were main degradation pathways of NFX. Around 20% mineralization was reached and the inhibition rate of the bacteria (Escherichia Coli) growth was reduced from 95.5% to 47.1% after the NFX degradation for 60 min. Despite the suppression of NFX degradation by NO2-, PO43- and humic acid, the NFX degradation in three aquaculture wastewater samples was faster than that in ultrapure water due to the positive effect of Br-and other factors. The above results demonstrate the treatment process solar-driven Fe(VI)/oxone has a good potential in antibiotics removal from the aquaculture wastewater.
Assuntos
Antibacterianos , Poluentes Químicos da Água , Águas Residuárias , Benzeno , Oxirredução , Norfloxacino , Aquicultura/métodos , Poluentes Químicos da Água/análiseRESUMO
Microplastics were frequently detected in the ocean, freshwater environment and wastewater treatment plants. This study aims to fill up the knowledge gap of microplastic distribution in nature reserves and scenery districts. Microplastic samples were collected, the distribution characteristics were analyzed with a stereoscopic microscope and a Fourier transform infrared spectrometer, and the ecological risks of microplastic pollution were calculated. Microplastics were detected in all the collected water samples and the average abundances of microplastics in the surface water of eleven investigated nature reserves and scenery districts ranged from 542 to 5500 items/m3. The degrees of microplastic pollution of all the surveyed nature reserves and scenery districts were classified as hazard level I. Fiber microplastics represented the largest average proportion (67.4 %) and 91.7 % of the detected microplastics were smaller than 2 mm. Corresponding to the frequent detection of fiber microplastics, cotton was the most abundant (25.5 %) polymer type of the suspected microplastics, followed by polyamide (PA, 20.6 %), polyester (PET, 17.0 %), and cellulose (15.6 %). For the ecological risk of the microplastic polymers, six, two and three nature reserves and scenery districts were defined to be at hazard level I, II and III, respectively. In brief, microplastic pollution occurred in all the surveyed nature reserves/scenery districts and posed different degrees of ecological risks.
RESUMO
With the rapid development of nanotechnology in the past decades, AgNPs are widely used in various fields and have become one of the most widely used nanomaterials, which leads to the inevitable release of AgNPs to the aquatic environment through various pathways. It is important to understand the effects of AgNPs on aquatic plants and zooplankton, which are widely distributed and diverse, and are important components of the aquatic biota. This paper reviews the effects of AgNPs on aquatic plants and zooplankton at the individual, cellular and molecular levels. In addition, the internal and external factors affecting the toxicity of AgNPs to aquatic plants and zooplankton are discussed. In general, AgNPs can inhibit growth and development, cause tissue damage, induce oxidative stress, and produce genotoxicity and reproductive toxicity. Moreover, the toxicity of AgNPs is influenced by the size, concentration, and surface coating of AgNPs, environmental factors including pH, salinity, temperature, light and co-contaminants such as NaOCl, glyphosate, As(V), Cu and Cd, sensitivity of test organisms, experimental conditions and so on. In order to investigate the toxicity of AgNPs in the natural environment, it is recommended to conduct toxicity evaluation studies of AgNPs under the coexistence of multiple environmental factors and pollutants, especially at natural environmental concentrations.
Assuntos
Nanopartículas Metálicas , Nanoestruturas , Animais , Zooplâncton , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , PlantasRESUMO
Plastic and microplastic pollution has caused a great deal of ecological problems because of its persistence and potential adverse effects on human health. The degradation of plastics through biological processes is of great significance for ecological health, therefore, the feasibility of plastic degradation by microorganisms has attracted a lot of attention. This study comprises a preliminary discussion on the biodegradation mechanism and the advantages and roles of different bacterial enzymes, such as PET hydrolase and PCL-cutinase, in the degradation of different polymers, such as PET and PCL, respectively. With a particular focus on their modes of action and potential enzymatic mechanisms, this review sums up studies on the biological degradation of plastics and microplastics related to mechanisms and influencing factors, along with their enzymes in enhancing the degradation of synthetic plastics in the process. In addition, biodegradation of plastic is also affected by plastic additives and plasticizers. Plasticizers and additives in the composition of plastics can cause harmful impacts. To further improve the degradation efficiency of polymers, various pretreatments to improve the efficiency of biodegradation, which can cause a significant reduction in toxic plastic pollution, were also preliminarily discussed here. The existing research and data show a large number of microorganisms involved in plastic biodegradation, though their specific mechanisms have not been thoroughly explored yet. Therefore, there is a significant potential for employing various bacterial strains for efficient degradation of plastics to improve human health and safety.
RESUMO
Microplastics (MPs) contamination is widely found in marine organisms. Marine traditional Chinese medicines (MTCM) are derived from marine organisms, but there are no relevant reports on detecting MPs in MTCM. This study selected samples of MTCM from two representative pharmaceutical companies, Brand F and Brand Z, including mother-of-pearl, stone cassia, seaweed, pumice, oyster, kombu, calcined Concha Arcae, cuttlebone, and clam shell to detect and analyze the presence of MPs. The abundance, type, color, size, and composition of MPs were investigated. Varying degrees of MPs contamination was present in all MTCM. The abundance of MPs in different MTCM ranged from 0.07 to 9.53 items/g. Their type, color, and size are similar, mainly fiber, transparent and size <2 mm. The composition of MPs is primarily made of cotton, cellulose and rayon. This study contributes to the first record of MPs in MTCM. Our results show that microplastic pollution is common in MTCM, which may cause potential risk to patients consuming MTCM.
Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Medicina Tradicional Chinesa , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Due to the small size, high mobility and large surface area, nanoplastics (NPs) showed high potential risks to aquatic organisms. This paper reviews the toxicity of NPs to aquatic organism at various trophic levels including bacteria, plankton (algae), zooplankton, benthos, and nekton (fish). The effects at individual level caused by NPs were explained and proved by cytotoxicity and genotoxicity, and the toxicity of NPs beyond individual level was also illustrated. The toxicity of NPs is determined by the size, dosage, and surface property of NPs, as well as environmental factors, the presence of co-contaminants and the sensitivity of tested organisms. Furthermore, the joint effects of NPs with other commonly detected pollutants such as organic pollutants, metals, and nanoparticles etc. were summarized. In order to reflect the toxicity of NPs in the real natural environment, studies on toxicity assessment of NPs with the coexistence of various environmental factors and contaminants, particularly under the concentrations in natural environment are suggested.
Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Microplásticos , Nanopartículas/toxicidade , Peixes , Poluentes Químicos da Água/toxicidadeRESUMO
The microbial communities associated with microplastics (MPs) and their ambient environments have received wide attention. Although previous studies have reported the differences of microbial communities between MPs and natural environment or substrates, the effects of MPs on microbial balance and functions in ambient water remain unclear, particularly for aquaculture water. Here, we investigated the MPs pollution in farm ponds of grass carp located in the Foshan City of Guangdong Province and reported the distinction of bacterial structures, functions, and complexity between microbiota on MPs and in water. MPs with an average abundance of 288.53 ± 74.27 items/L in pond water were mostly fibers and cellulose, mainly transparent and in size of 0.5-1 mm. Structures and functions of bacterial communities on MPs significantly differed from that in pond water. A large number of enriched or depleted OTUs on MPs compared with water belong to the phylum Proteobacteria, the predominant phylum in microbial communities on MPs and in water. Some species included in the phylum Proteobacteria have been shown to be cellulose-degrading and pathogenic. Microbiota on MPs exhibited higher species richness and diversity as well as a more complex network than that in water, illustrating MPs as a distinct habitat in the aquaculture system.
Assuntos
Microbiota , Poluentes Químicos da Água , Aquicultura , Celulose , Água Doce , Microplásticos , Plásticos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
As an issue of great concern, microplastics pollution has emerged as a key environmental challenge of our time. The atmosphere is a significant compartment in the global cycle of microplastics, however, studies on the transport and deposition of airborne microplastics is limited. In the present work, atmospheric wet and dry deposition of microplastics were analyzed over one year in an urban environment of megacity Guangzhou, China. The atmospheric deposition fluxes of microplastics ranged from 51 to 178 particles/m2/d (mean: 114 ± 40 particles/m2/d). Fibers, fragments, films and microbeads were observed in the deposition samples, with fibers being the most abundant microplastics, accounting for 77.6 ± 19.1% of the total. The chemical composition of microplastics were identified using micro Fourier transform infrared spectrometer. 78.7% of the fibrous microplastics were derived from petrochemicals and most were polyethylene terephthalate (polyester), suggesting that textiles (e.g., clothes and curtains) were likely the main source. The results of back-trajectory analysis indicated that city rivers may act as secondary sources of airborne microplastics. Though no significant correlation was found between atmospheric microplastic deposition and meteorological factors such as rainfall and wind events, these factors were suggested to be positive drivers for the transport and deposition of airborne microplastic.
Assuntos
Microplásticos , Poluentes Químicos da Água , Atmosfera , Monitoramento Ambiental , Plásticos , Rios , Poluentes Químicos da Água/análiseRESUMO
Antibiotic pollution has become an increasingly serious issue due to the extensive application of antibiotics, their resistance to removal, and the harmful effects on aquatic environments and humans. Breeding wastewater is one of the most important sources of antibiotics in the aquatic environment because of the undeveloped treatment systems in breeding farms. It is imperative to establish an effective antibiotic removal process for breeding wastewater. This paper reviews the treatment methods used to remove antibiotics from breeding wastewater. The mechanisms and removal efficiency of constructed wetlands, biological treatments, advanced oxidation processes (AOPs), membrane technology, and combined treatments are explained in detail, and the advantages and disadvantages of the various treatment methods are compared and analyzed. Constructed wetlands have high removal rates for sulfonamide (SM), tetracycline (TC), and quinolone (QN). The antibiotic removal efficiency of biological treatment methods is affected by various processes and environmental factors, whereas AOPs and combined treatment methods have better antibiotic removal effects. Although it has broad application prospects, the application of membrane technology for the treatment of antibiotics in breeding wastewater needs further research.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antibacterianos , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas AlagadasRESUMO
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe2O4/TiO2 mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h+) were found to contribute to the IBP decay. The presence of SO42- showed no significant effect, while NO3- accelerated the photodegradation, and other anions including HCO3-, Cl-, F-, and Br- showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]0:[IBP]0 = 0.4-4), with reaction rate of 5.3-13.1 and 1.3-2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H2O2. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Assuntos
Chlorella vulgaris , Poluentes Químicos da Água , Catálise , Peróxido de Hidrogênio , Ibuprofeno/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
The microplastics pollution in wild aquatic organisms has been described by many studies. However, few studies focused on the farmed ones and MPs impacts on their gut microbiota under natural conditions. Here, we present the first detection of MPs in shrimp ponds and Litopenaeus vannamei. We also globally, firstly and preliminarily investigate the association between colonization of microorganism on MPs and intestinal microbiota under natural conditions. Microplastics (5129 ± 1176 items/kg d.w.) in sediments were mainly pellets, mostly white and blue, and in size less than 1 mm. Microplastics (14.08 ± 5.70 items/g w.w.) in shrimps were higher than that in mostly wild aquatic organisms and positively correlated with that in sediments. Blue fibers in small size (<0.5 mm) were dominant in shrimps. The bacterial communities and their microbial function on MPs were similar with that in shrimp gut, with higher diversity and richness in bacteria communities colonized on MPs. Network analysis demonstrated that the colonization of microorganism on MPs were associated with shrimp intestinal microbiota. Results suggest that except for toxicity reported previously, the effects on intestinal microbiota induced by MPs were possibly because of the biofilm on their surfaces as well, causing notable impacts on aquatic animals.
Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Bactérias/genética , Microplásticos , Plásticos/toxicidadeRESUMO
Previous studies have indicated that white spot syndrome virus (WSSV) infection induces apoptosis in many shrimp organs. However, the mechanism by which WSSV causes host apoptosis remains largely unknown. In this study, we demonstrated the function of wsv152, the first mitochondrial protein identified as encoded by WSSV. Glutathione S-transferase pulldown and co-immunoprecipitation analysis revealed that wsv152 interacts with the shrimp mitochondrial protein cytochrome c oxidase 5a (COX5a), a subunit of the COX complex. We also found that wsv152 expression significantly increased the rate of apoptosis, suggesting a role of wsv152 in WSSV-induced apoptosis in shrimp. Knockdown of wsv152 in vivo led to downregulation of several apoptosis-related shrimp genes, including cytochrome c, apoptosis-inducing factor and caspase-3. Suppression of wsv152 also resulted in significant reductions in the number of WSSV genome copies in tissues and in the mortality of WSSV-infected shrimp. Together, these results suggest that wsv152 targets host COX5a and is associated with the expression profiles of apoptosis-related shrimp genes. Wsv152 is likely also involved in WSSV-induced apoptosis, thereby facilitating virus infection and playing a complex role in WSSV pathogenesis.
Assuntos
Apoptose/genética , Penaeidae/virologia , Proteínas Virais/metabolismo , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hemócitos/metabolismo , Hemócitos/patologia , Interações Hospedeiro-Patógeno , Mitocôndrias/metabolismo , Penaeidae/metabolismo , Ligação Proteica , Taxa de Sobrevida , Carga Viral , Proteínas Virais/genética , Vírus da Síndrome da Mancha Branca 1/patogenicidadeRESUMO
This study aims at systematically examining the potential of removing the emerging pollutant sulfamethoxazole (SMX) from aqueous solution under photo-assisted peroxymonosulfate (PMS) activation by Fe(ii). The residual SMX was determined by HPLC analysis. The concentration of Fe(ii) ([Fe(ii)]) was monitored during SMX degradation. Fe(ii) and PMS cooperated with each other for faster SMX photodegradation; a relatively lower or higher molar ratio between Fe(ii) and PMS led to lower SMX removal efficiency due to the insufficient radicals or scavenging effect. A fixed reaction ratio of [Fe(ii)]Δ : [PMS]0 with 1.6 : 1 at the first 5 min was detected for reactions with [Fe(ii)]0 ≥ 0.5 mM or [PMS]0 ≤ 0.25 mM. The pH level of around 6.0 was recommended for optimal SMX removal under the treatment process UVA + Fe(ii) + PMS. Six transformation products were detected through UPLC/ESI-MS analysis, and four of the proposed intermediates were newly reported. Concentrations of the intermediates were proposed based on the isoxazole-ring balance and the Beer-Lambert law. Total Organic Carbon (TOC) reduction was mainly attributed to the loss of benzene ring, N-S cleavage, and isoxazole ring opening during SMX degradation. The contributions of reactive species OHË and SO4Ë- were determined based on quench tests. The acute toxicity of SMX to the rotifers was eliminated after the proposed treatment, demonstrating that the process was effective for SMX treatment and safe to the environment.