Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 290: 120558, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437909

RESUMO

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Assuntos
Conectoma , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Encéfalo , Tálamo , Imageamento por Ressonância Magnética/métodos
2.
World Neurosurg ; 185: e995-e1003, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462068

RESUMO

BACKGROUND: Butterfly vertebra (BV) is a rare congenital spinal anomaly for which there is a paucity of large-scale retrospective studies and established guidelines for treatment. The objective of this study was to elucidate the clinical characteristics, imaging findings, and therapeutic approaches for BV. METHODS: We conducted a retrospective analysis of 30 patients diagnosed with BV at our hospital from 2009 to 2023, examining clinical data, imaging findings, and clinical interventions. RESULTS: The analysis comprised a cohort of 30 patients, consisting of 15 males and 15 females, with a mean age of 27.63 ± 19.84 years. Imaging studies indicated that the majority of vertebral bodies affected by BV were single-segmented (63.3%, 19/30) and less commonly multi-segmented (36.7%, 11/30). These findings frequently coexisted with other medical conditions, most notably spinal scoliosis (76.7%, 23/30). Furthermore, the study identified a range of spinal abnormalities among patients, including hemivertebral deformity (30.0%, 9/30), spinal cleft (10.0%, 3/30), lumbar disc protrusion or herniation (10.0%, 3/30), vertebral slippage (10.0%, 3/30), thoracic kyphosis deformity (6.67%, 2/30), vertebral fusion deformity (6.67%, 2/30), compressive fractures (3.3%, 1/30), and vertebral developmental anomalies (3.3%, 1/30). Clinical intervention resulted in symptom relief for 23 nonsurgical patients through lifestyle modifications, analgesic use, and physical therapy. Seven surgical patients underwent appropriate surgical procedures, leading to satisfaction and adherence to regular postoperative follow-up appointments. CONCLUSIONS: BV is a rare vertebral anomaly that can be easily misdiagnosed due to its similarity to other diseases. Consequently, it is imperative to enhance vigilance in the differential diagnosis process in order to promptly recognize BV. Furthermore, in cases where patients present with additional associated radiographic findings, a thorough evaluation is typically warranted and timely measures should be taken for treatment.


Assuntos
Corpo Vertebral , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança , Pré-Escolar , Corpo Vertebral/cirurgia , Corpo Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/cirurgia , Doenças da Coluna Vertebral/diagnóstico por imagem , Idoso
3.
Brain Res Bull ; 205: 110837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043647

RESUMO

Neuroimaging research has revealed significant changes in brain structure and function in patients with cervical spondylotic myelopathy(CSM). The thalamus plays a crucial role in this process, although its mechanisms of action remain incompletely understood. This study aimed to investigate whether spinal cord compression leads to alterations in the functional connectivity between the thalamus and the cerebral cortex, and to determine if such changes are associated with structural and functional remodeling of the brain in patients with CSM, and to identify potential neuroimaging biomarkers for classification. The study included 40 patients with CSM and 34 healthy controls(HCs) who underwent resting-state functional magnetic resonance imaging(fMRI) and structural MRI scans. Brain structural and functional metrics were quantified using functional connectivity(FC), fractional amplitude of low-frequency fluctuations(fALFF), surface-based morphometry(SBM), and independent component analysis(ICA) based on functional and structural MRI. Patients with CSM exhibited significantly reduced fALFF in the bilateral lateral lingual gyrus, bilateral calcarine fissure, left precentral gyrus and postcentral gyrus, left middle and superior occipital gyrus, left superior marginal gyrus, left inferior parietal gyrus, and right Rolandic operculum. ICA results revealed weakened functional connectivity between the sensorimotor network (SMN) and the left and right frontoparietal network(FPN), and lateral visual network (lVN), along with decreased connectivity between lVN and rFPN, and increased connectivity between lFPN and rFPN. Patients with CSM also had decreased sulcus depth in the bilateral insula, left precentral and postcentral gyrus, and right lingual gyrus and calcarine fissure. Furthermore, cervical spondylotic myelopathy patients showed decreased functional connectivity between the left ventral posterolateral nucleus (VPL) of the thalamus and the right middle occipital gyrus (MOG). Finally,multimodal neuroimaging with support vector machine(SVM) classified patients with CSM and healthy controls with 86.00% accuracy. Our study revealed that the decrease in functional connectivity between the thalamus and cortex mediated by spinal cord compression leads to structural and functional reorganization of the cortex. Features based on neuroimaging markers have the potential to become neuroimaging biomarkers for CSM.


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Biomarcadores
4.
Front Neurosci ; 17: 1087945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816111

RESUMO

Introduction: Cervical spondylotic myelopathy (CSM) is a common form of non-traumatic spinal cord injury (SCI) and usually leads to remodeling of the brain and spinal cord. In CSM with gait instability, the remodeling of the brain and cervical spinal cord is unclear. We attempted to explore the remodeling of these patients' brains and spinal cords, as well as the relationship between the remodeling of the brain and spinal cord and gait instability. Methods: According to the CSM patients' gait, we divided patients into two groups: normal gait patients (nPT) and abnormal gait patients (aPT). Voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (rs-FC) were performed for estimating brain changes. Cross-sectional area (CSA) and fractional anisotropy (FA) of the spinal cord were computed by Spinal cord toolbox. Correlations of these measures and the modified Japanese Orthopedic Association (mJOA) score were analyzed. Results: We found that the zALFF of caudate nucleus in aPT was higher than that in healthy controls (HC) and lower than that in nPT. The zALFF of the right postcentral gyrus and paracentral lobule in HC was higher than those of aPT and nPT. Compared with the nPT, the aPT showed increased functional connectivity between the caudate nucleus and left angular gyrus, bilateral precuneus and bilateral posterior cingulate cortex (PCC), which constitute a vital section of the default mode network (DMN). No significantly different FA values or CSA of spinal tracts at the C2 level were observed between the HC, nPT and aPT groups. In CSM, the right paracentral lobule's zALFF was negatively correlated with the FA value of fasciculus gracilis (FCG), and the right caudate zALFF was positively correlated with the FA value of the fasciculus cuneatus (FCC). The results showed that the functional connectivity between the right caudate nucleus and DMN was negatively correlated with the CSA of the lateral corticospinal tract (CST). Discussion: The activation of the caudate nucleus and the strengthening functional connectivity between the caudate nucleus and DMN were associated with gait instability in CSM patients. Correlations between spinal cord and brain function might be related to the clinical symptoms in CSM.

5.
Microb Pathog ; 165: 105486, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35400546

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. After a thorough investigation, the Editor has concluded that the acceptance of this article was based upon the positive advice of two illegitimate reviewer reports. The reports were submitted from email accounts which were provided to the journal as suggested reviewers during the submission of the article. Although purportedly real reviewer accounts, the Editor has concluded that these were not of appropriate, independent reviewers. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewers whose identity was assumed and to the readers of the journal that this deception was not detected during the submission process.

6.
Sensors (Basel) ; 21(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064578

RESUMO

Satellites have many high-, medium-, and low-frequency micro vibration sources that lead to the optical axis jitter of the optical load and subsequently degrade the remote sensing image quality. To address this problem, this paper developed an image motion detection and restoration method based on an inertial reference laser, and describe edits principle and key components. To verify the feasibility and performance of this method, this paper also built an image motion measurement and restoration system based on an inertial reference laser, which comprised a camera (including the inertial reference laser unit and a Hartmann wavefront sensor), an integrating sphere, a simulated image target, a parallel light pope, a vibration isolation platform, a vibration generator, and a 6 degrees of freedom platform. The image restoration principle was also described. The background noise in the experiment environment was measured, and an image motion measurement accuracy experiment was performed. Verification experiments of image restoration were also conducted under various working conditions. The experiment results showed that the error of image motion detection based on the inertial reference laser was less than 0.12 pixels (root mean square). By using image motion data to improve image quality, the modulation transfer function (MTF) of the restored image was increased to 1.61-1.88 times that of the original image MTF. The image motion data could be used as feedback to the fast steering mirror to compensate for the satellite jitter in real time and to directly obtain high-quality images.

7.
Microb Pathog ; 144: 104126, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173494

RESUMO

Streptococcus pneumoniae (pneumococcus) is touted to be the generally found pathogen in patients with respiratory issues and there is an epidemiologic linkage present between Respiratory syncytial virus (RSV). This study aim at investigating the interaction between RSV and two serotypes of S. pneumoniae using a distinct animal model and a well-established colonizing pneumococcal strain. Phase variants phenotype of each strain was determined under oblique light. Co infection model was developed using BALB/c mice housed in a BSL-2 facility. Coinfection experiments were performed and number of bacterial colonies was quantified and phase determination was evaluated. RSV was detected in sample through real-time quantitative PCR. Adherence assays were performed to determine adherence of Spn strains and its knock out ΔNanA to nasopharyngeal carcinoma (NPC) epithelial CNE3 cell line. The biofilm viability was determined and phase composition was counted using plate count. Neuraminidase activity was measured in fluorometircassessed using 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUAN) as substrate as described in earlier literature. The GraphPad Software version 5.01 i.e., GraphPad Prism was used to conduct the statistical analysis. The extent of bacterial colonization was increased significantly (p < 0.05), when the mice were co infected. Nasal epithelium remained intact in mock sample with features of a thick mucociliary border. A small percentage of pneumococci exhibit phase variation between opaque phase and transparent phase. The percentage adherent of both phase were not found to be varying significantly within serotype but it was seen that nonpathogenic type 27 was more adherent. Biofilm formation was selectively more for transparent phase from a mixed-phase inoculum. Adherence of both phase variant of S. pneumoniae to nasopharyngeal epithelial cells 2 h post infection expressed as the percentage of adherent bacteria relative to the inoculum. In absence of viral infection, the nasal colonization of the opaque and the transparent variant was increased many folds, which was a significant differences. The extent of nasal colonization by the ΔNanA mutant strain were significantly reduced post-bacterial infection for both type of wild-type (P < 0.05). The findings explore insights into the interactions occurring between S. pneumoniae and RSV during respiratory infections and pneumococcal acquisition, indicate that pneumococcal serotypes have different ability to cause infection as well as co infections and potentially follow an unappreciated mechanism. Much more research work is needed to further understand the minutiae of this interaction within co-infection process.


Assuntos
Aderência Bacteriana/fisiologia , Aderência Bacteriana/efeitos da radiação , Interações Microbianas/fisiologia , Pneumonia Pneumocócica/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Animais , Biofilmes/crescimento & desenvolvimento , Linhagem Celular Tumoral , Coinfecção/microbiologia , Células Epiteliais/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/microbiologia , Vírus Sinciciais Respiratórios/fisiologia , Streptococcus pneumoniae/fisiologia
8.
Scand J Urol ; 54(1): 14-19, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32026731

RESUMO

Objective: Saturation biopsy is more sensitive than transrectal biopsy in the detection of prostate cancer but is an invasive method and has a risk of overdiagnosis. Multiparametric magnetic resonance imaging (mpMRI) provides imaging and working information of the prostate. The purpose of the study was to compare the performance of pelvic phased-array mpMRI against saturation biopsies in men with suspected advanced prostate cancer considering pathology of the surgical specimen as the reference standard.Materials and methods: Data of men (n = 81) with prostate-specific antigen >10 ng/mL, low free-to-total ratio <0.1, and/or prostate-specific antigen density >0.15 who underwent mpMRI and saturation biopsy prior to radical prostatectomy were reviewed. The mpMRI was characterized as per Prostate Imaging Reporting and Data System v2.1. Gleason scores ≥3 + 4 were considered as prostate cancer. The beneficial score was evaluated for each diagnostic method for the decision-making of prostatectomy.Results: mpMRI was positive in 72 men, while saturated biopsies reported 57 men with positive prostate cancer. The histopathology of the surgical specimen reported prostate cancer in 76 men. mpMRI and saturated biopsies reported 0.934 and 0.737 sensitivities and 0.926 and 0.741 specificities, respectively. mpMRI had cancer detectability between 0.55 and 0.965 diagnostic confidence and saturation biopsies had cancer detectability between 0.85 and 0.952 diagnostic confidence. Above 0.965 and 0.952 diagnostic confidence, mpMRI and saturation biopsies had the risk of overdiagnosis.Conclusions: mpMRI can provide additional information for the detection of prostate cancer before saturation biopsies.Level of Evidence: III.


Assuntos
Biópsia com Agulha de Grande Calibre/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Sensibilidade e Especificidade
9.
Biochem Biophys Res Commun ; 495(1): 506-511, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108992

RESUMO

Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1ß, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.


Assuntos
Regulação para Baixo , Fosfatases de Especificidade Dupla/genética , MicroRNAs/genética , Neuralgia/genética , Animais , Células Cultivadas , Citocinas/análise , Inflamação/genética , Inflamação/patologia , Microglia/patologia , Neuralgia/patologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Nervos Espinhais/metabolismo , Nervos Espinhais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA