RESUMO
This study investigated the impact of sweeteners on the release of heavy metals during the heating and atomization processes in electronic cigarettes. Based on a PG/VG base e-liquid with the addition of 2% and 5% neotame or sucralose, we quantitatively analyzed the impact of sweetener content on the levels of heavy metals such as Ni, Cr, and Fe in the e-liquid and aerosol after heating and atomization. Additionally, the heated e-liquid samples were used to culture SH-SY-5Y and Beas-2B cells, and their cytotoxic effects were assessed using the CCK-8 assay. The results indicated that the e-liquid with 5% sucralose had the highest average levels of heavy metals after heating and atomization, particularly nickel (13.36 ± 2.50 mg/kg in the e-liquid and 12,109 ± 3,229 ng/200 puffs in the aerosol), whereas the e-liquid with neotame had significantly lower average heavy metal content in comparison. Additionally, it was measured that the chloride ion concentration in the e-liquid with 5% sucralose reached 191 mg/kg after heating at 200°C for 1 h, indicating that heating sucralose generated chloride ions, Which might corrode metal parts components leading to heavy metal release. Cytotoxicity tests revealed that the base e-liquid without sweeteners exhibited the highest average cell viability after heating, at 64.80% ± 2.84% in SH-SY-5Y cells and 63.24% ± 0.86% in Beas-2B cells. Conversely, the e-liquid variant with 5% sucralose showed a significant reduction in average cell viability, reducing it to 50.74% ± 0.88% in SH-SY-5Y cells and 53.03% ± 0.76% in Beas-2B cells, highlighting its more pronounced cytotoxic effects compared to other tested e-liquids. In conclusion, sucralose in e-liquids should be limited preferably less than 2%, or replaced with neotame, a safer alternative, to minimize health risks.
RESUMO
The relationship between vascular proteins (VPs) and intracranial aneurysms (IAs) has not been fully elucidated. We used Mendelian randomization (MR) analysis to explore the effect of VPs on IAs. Dataset of aneurysmal subarachnoid hemorrhage (aSAH) [5140 cases and 71,934 controls] and unruptured intracranial aneurysm (uIA) [2070 cases and 71,934 controls] were obtained from individuals of European ancestry. Univariate MR was used to explore the associations between 90 VPs and IAs. Then, we performed multivariate MR (MVMR) to further investigate the identified VP-to-IA estimates. Two-sample MR showed that TNFSF14 was inversely associated with aSAH (odds ratio [OR] = 0.831, 95% CI: 0.713-0.969, p = 0.018). IL-16 (OR = 1.218, 95% CI: 1.032-1.438, p = 0.020) and AgRP (OR = 1.394, 95% CI: 1.048-1.855, p = 0.023) were positively associated with aSAH. HBEGF (OR = 0.642, 95% CI: 0.461-0.894, p = 0.009), MCP-1 (OR = 1.537, 95% CI: 1.007-2.344, p = 0.046), and CX3CL1 (OR = 0.762, 95% CI: 0.581-0.999, 0.049 < p < 0.050) were associated with uIA risk. The MVMR showed that the TNFSF14-to-aSAH estimate remained statistically significant after adjustment for past tobacco smoking, alcohol consumption, systolic blood pressure and body mass index. Our study indicated that low serum TNFSF14 levels might be a potential risk factor for IA rupture. Five VPs (HBEGF, MCP-1, IL-6, CX3CL1, and AgRP) are associated with the risk of IAs (both uIA and aSAH).
RESUMO
The occurrence of cancer is often accompanied by immune evasion and tumor-promoting inflammation, with interleukins (IL) playing a pivotal role in the immune-inflammatory mechanism. However, the precise contribution of serum interleukins in cancer remains elusive. We obtained GWAS summary data for 35 interleukins from eight independent large-scale serum proteome studies of European ancestry populations and for 23 common cancers from the FinnGen Consortium. We then conducted a multicenter Mendelian Randomization (MR) study to explore the relationship between systemic inflammatory status and cancers. 24 causal associations between interleukins and cancers were supported by multicenter data, 18 of which were reported for the first time. Our results indicated that IL-1α (Hodgkin lymphoma), IL-5 (bladder cancer), IL-7 (prostate cancer), IL-11 (bone malignant tumor), IL-16 (lung cancer), IL-17A (pancreatic cancer), IL-20 (bladder cancer), IL-22 (lymphocytic leukemia), IL-34 (breast cancer), IL-36ß (prostate cancer), and IL-36γ (liver cancer) were risk factors for related cancers. Conversely, IL-9 (malignant neoplasms of the corpus uteri), IL-17C (liver cancer), and IL-31 (colorectal cancer, bladder cancer, pancreatic cancer, and cutaneous melanoma) exhibited protective effects against related cancers. Notably, the dual effects of serum interleukins were also observed. IL-18 acted as a risk factor for prostate cancer, however, was a protective factor against laryngeal cancer. Similarly, IL-19 promoted the development of lung cancer and myeloid leukemia, while conferring protection against Breast, cervical, and thyroid cancers. Our study confirmed the genetic association between multiple serum interleukins and cancers. Immune and anti-inflammatory strategies targeting these associations provide opportunities for prevention and treatment.
Assuntos
Estudo de Associação Genômica Ampla , Interleucinas , Análise da Randomização Mendeliana , Neoplasias , Humanos , Interleucinas/sangue , Interleucinas/genética , Neoplasias/genética , Neoplasias/sangue , Neoplasias/imunologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Masculino , Fatores de Risco , FemininoRESUMO
mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.
Assuntos
Ácido N-Acetilneuramínico , Nanopartículas , RNA Mensageiro/genética , Eficácia de Vacinas , Vacinas de mRNA , Endossomos , Células DendríticasRESUMO
Studies have shown that tumor-associated macrophages (TAMs) are crucial for the establishment and maintenance in immunosuppressive tumor immune microenvironment (TIME), which can help tumor cells to achieve immune escape and attenuate antitumor therapy. Siglecs, the receptors of sialic acid (SA), widely exist in TAMs, which could be targeted to disrupt TIME and inhibit tumor growth at the root. Therefore, a SA-modified VCR liposome was reported (VCR-SSAL). Cellular and pharmacodynamic experiments showed that VCR-SSAL exhibited strong TAMs targeting and tumor-killing ability. Interestingly, VCR-SSAL treatment induced a phenomenon in which the cancerous tissues were "fell off" from the growth site, after which the wound gradually healed. Three months after the wound healed, the mice whose tumors fell off were re-inoculated, and the tumor fell off again without treatment, with an exfoliation rate of 100%. We speculated that this special efficacy might be due to that VCR loaded in VCR-SSAL could activate adaptive immunity by inducing DNA damage, promoting cytotoxic T lymphocytes (CTLs) infiltration into tumor sites, and enhancing the antitumor immune response. Thus, this study might provide new insights into the application of traditional chemotherapeutic drugs.
Assuntos
Lipossomos , Neoplasias , Camundongos , Animais , Vincristina , Lipossomos/uso terapêutico , Ácido N-Acetilneuramínico , Neoplasias/tratamento farmacológico , Microambiente TumoralRESUMO
Immune checkpoint blockade (ICB) treatment for the clinical therapy of numerous malignancies has attracted widespread attention in recent years. Despite being a promising treatment option, developing complementary strategies to enhance the proportion of patients benefiting from ICB therapy remains a formidable challenge because of the complexity of the tumor microenvironment. Ibrutinib (IBR), a covalent inhibitor of Bruton's tyrosine kinase (BTK), has been approved as a clinical therapy for numerous B-cell malignancies. IBR also irreversibly inhibits interleukin-2 inducible T cell kinase (ITK), an essential enzyme in Th2-polarized T cells that participates in tumor immunosuppression. Ablation of ITK by IBR can elicit Th1-dominant antitumor immune responses and potentially enhance the efficacy of ICB therapy in solid tumors. However, its poor solubility and rapid clearance in vivo restrict T cell targetability and tumor accumulation by IBR. A sialic acid derivative-modified nanocomplex (SA-GA-OCT@PC) has been reported to improve the efficacy of IBR-mediated combination immunotherapy in solid tumors. In vitro and in vivo experiments showed that SA-GA-OCT@PC effectively accumulated in tumor-infiltrating T cells mediated by Siglec-E and induced Th1-dominant antitumor immune responses. SA-GA-OCT@PC-mediated combination therapy with PD-L1 blockade agents dramatically suppressed tumor growth and inhibited tumor relapse in B16F10 melanoma mouse models. Overall, the combination of the SA-modified nanocomplex platform and PD-L1 blockade offers a treatment opportunity for IBR in solid tumors, providing novel insights for tumor immunotherapy.
Assuntos
Antígeno B7-H1 , Ácido N-Acetilneuramínico , Camundongos , Animais , Fosfolipídeos , Recidiva Local de Neoplasia , Imunoterapia , Microambiente TumoralRESUMO
Several studies have reported the prevalence of anti-polyethylene glycol (PEG) antibodies (APAs) in healthy people, highlighting the widespread existence of APAs. The prevalence of anti-PEG immunoglobulin (Ig)G is significantly negatively correlated with age. Here, we used Wistar rats as model organism to examine whether APAs in parental rats can affect the production of antibodies in their offspring. After being pre-stimulated with blank PEGylated nanoemulsions (PE) to induce APAs production, parental rats were paired in cages. The presence of antibodies in the parents and offspring was detected using enzyme-linked immunosorbent assay. The presence of antibodies in the parental rats led to significant anti-PEG IgG positivity in their offspring, indicating that anti-PEG IgG exhibits intergenerational inheritance. Moreover, anti-PEG IgG in the offspring rats could bind to PE and accelerate its blood clearance. To the best of our knowledge, this is the first report on the intergenerational properties of APAs.
Assuntos
Imunoglobulina G , Polietilenoglicóis , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Cinética , Polietilenoglicóis/metabolismo , Ratos , Ratos WistarRESUMO
Injections of polyethylene glycol (PEG)-modified nanomedicines can lead to an accelerated clearance of the next dose of PEGylated nanomedicines, which is referred to as the accelerated blood clearance (ABC) phenomenon. It has been reported that anti-PEG IgM plays an important role in the induction of the ABC phenomenon, identifying the interface between the main chain of PEG and the hydrophobic segment of the repeated injections of the PEGylated nanocarriers, resulting in increased liver uptake and loss of long-cycle characteristics. In this study, we demonstrated that the 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) in PEGylated nanoemulsions (PEs) may mask this interface between the main chain of PEG and the hydrophobic segment, inhibiting the recognition and binding of anti-PEG IgM to PEs, and evidently weakening the ABC phenomenon of PEs. This will provide a novel strategy to improve the curative effect of PEGylated nanocarriers. PEGylated nanoemulsions (PEs) with 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induced weakened the accelerated blood clearance (ABC) phenomenon in Wistar rats during repeated injection of PEs.
Assuntos
Lipossomos , Polietilenoglicóis , Animais , Imunoglobulina M , Lipossomos/química , Fígado/metabolismo , Polietilenoglicóis/química , Ratos , Ratos WistarRESUMO
Immune checkpoint blockade (ICB) treatment is promising for the clinical therapy of numerous malignancies. However, most cancer patients rarely benefit from such single-agent immunotherapies because of the complexity of both the tumor and tumor microenvironment. A tumor-specific liposomal vehicle (DOX-SAL) modified with a sialic acid-cholesterol conjugate (SA-CH) and remotely loaded with doxorubicin (DOX) is herein reported for improving chemoimmunotherapy. The intravenous administration of DOX-SAL dramatically downregulates tumor-associated macrophage (TAM)-mediated immunosuppression, inhibits immunoregulatory functions, and promotes intratumoral infiltration of CD8+ T cells. Compared to conventional liposomes, DOX-SAL-mediated combination therapy with a PD-1-blocking monoclonal antibody (aPD-1 mAb) almost completely eliminates B16F10 tumors and efficiently inhibits 4T1 tumors. Moreover, cancer stem cells exhibit efficient tumor-initiating, tumor-propagating, and immunosuppressive tumor microenvironment-shaping capabilities. To further improve the treatment efficacy of an immunologically "cold" tumor, metformin (MET), which selectively eradicates breast cancer tumor stem cells, is co-encapsulated with DOX into liposomes to develop DOX/MET-SAL. The combination therapy with DOX/MET-SAL and aPD-1 mAb in a 4T1 orthotopic mouse model indicates their synergetic benefit on primary tumor inhibition, metastasis suppression, and survival rate improvement. Thus, the multifunctional liposomal platform has potential value for ICB combination immunotherapy.
Assuntos
Neoplasias da Mama , Lipossomos , Animais , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Lipossomos/uso terapêutico , Camundongos , Ácido N-Acetilneuramínico , Microambiente TumoralRESUMO
Neutrophil-mediated drug-delivery systems have gained widespread attention owing to their superior efficacy in cancer therapy. Neutrophils, the most abundant white cells in peripheral blood, are known to migrate to inflamed tumors. Here, we elaborate on a novel strategy to enhance tumor infiltration of neutrophils by photodynamic/photothermal therapy (PDT/PTT) to deliver ibrutinib (IBR) nanocomplexes for cancer immunotherapy. DiR-loading liposomes (DiR-lipos) were administered to induce acute inflammation, and sialic acid (SA) derivative-coated IBR-loading nanocomplexes (SA-2@NCs) were fabricated for targeting activated peripheral blood neutrophils (PBNs). This in vitro and in vivo attempt, therefore, proved the hypothesis that inducing acute inflammation via PDT/PTT could facilitate the migration of PBNs, which could deliver SA-2@NCs into the tumor. The enhanced tumor delivery of SA-2@NCs was accompanied by enhanced antitumor T-cell immune responses in a mouse orthotopic breast cancer model. Our findings indicate that the combination of IBR-mediated immunotherapy with DiR-mediated PDT/PTT bring together two leading novel strategies, taking advantage of their synergistic mechanisms of action for a potent anti-tumor efficacy for breast cancer therapy.
Assuntos
Neutrófilos , Fotoquimioterapia , Adenina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos , Terapia Fototérmica , PiperidinasRESUMO
BACKGROUND: Aspartic proteases (APs) are a class of aspartic peptidases belonging to nine proteolytic enzyme families whose members are widely distributed in biological organisms. APs play essential functions during plant development and environmental adaptation. However, there are few reports about APs in fast-growing moso bamboo. RESULT: In this study, we identified a total of 129 AP proteins (PhAPs) encoded by the moso bamboo genome. Phylogenetic and gene structure analyses showed that these 129 PhAPs could be divided into three categories (categories A, B and C). The PhAP gene family in moso bamboo may have undergone gene expansion, especially the members of categories A and B, although homologs of some members in category C have been lost. The chromosomal location of PhAPs suggested that segmental and tandem duplication events were critical for PhAP gene expansion. Promoter analysis revealed that PhAPs in moso bamboo may be involved in plant development and responses to environmental stress. Furthermore, PhAPs showed tissue-specific expression patterns and may play important roles in rapid growth, including programmed cell death, cell division and elongation, by integrating environmental signals such as light and gibberellin signals. CONCLUSION: Comprehensive analysis of the AP gene family in moso bamboo suggests that PhAPs have experienced gene expansion that is distinct from that in rice and may play an important role in moso bamboo organ development and rapid growth. Our results provide a direction and lay a foundation for further analysis of plant AP genes to clarify their function during rapid growth.
Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Peptídeo Hidrolases , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismoRESUMO
Ibrutinib (IBR), an irreversible Bruton's tyrosine kinase (BTK) inhibitor, is expected to be a potent therapeutic modality, given that BTK is overexpressed in tumor-associated macrophages (TAMs) and participates in promoting tumor progression, angiogenesis, and immunosuppression. However, rapid clearance in vivo and low tumor accumulation have rendered effective uptake of IBR by TAMs challenge. Herein, we designed and synthesized a sialic acid (SA)-stearic acid conjugate modified on the surface of nanocomplexes to encapsulate IBR (SA/IBR/EPG) for targeted immunotherapy. Amphiphilic egg phosphatidylglycerol (EPG) structure and strong IBR-EPG interactions render these nanocomplexes high IBR loading capacity, prolonged blood circulation, and optimal particle sizes (â¼30â¯nm), which can effectively deliver IBR to the tumor, followed by subsequent internalization of IBR by TAMs through SA-mediated active targeting. In vitro and in vivo tests showed that the prepared SA/IBR/EPG nanocomplexes could preferentially accumulate in TAMs and exert potent antitumor activity. Immunofluorescence staining analysis further confirmed that SA/IBR/EPG remarkably inhibited angiogenesis and tumorigenic cytokines released by TAM and eventually suppressed tumor progression, without eliciting any unwanted effect. Thus, SA-decorated IBR nanocomplexes present a promising strategy for cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Ibrutinib (IBR), an irreversible Bruton's tyrosine kinase (BTK) inhibitor, is expected to be a potent therapeutic modality, given that BTK is overexpressed in tumor-associated macrophages (TAMs) and participates in promoting tumor progression, angiogenesis, and immunosuppression. However, rapid clearance in vivo and low tumor accumulation have rendered effective uptake of IBR by TAMs challenge. Herein, we designed and synthesized a sialic acid (SA)-stearic acid conjugate modified on the surface of nanocomplexes to encapsulate IBR (SA/IBR/EPG) for targeted delivery of IBR to TAMs. The developed SA/IBR/EPG nanocomplexes exhibited high efficiency in targeting TAMs and inhibiting BTK activation, consequently inhibiting Th2 tumorigenic cytokine release, reducing angiogenesis, and suppressing tumor growth. These results implied that the SA/IBR/EPG nanocomplex could be a promising strategy for TAM-targeting immunotherapy with minimal systemic side effects.
Assuntos
Sistemas de Liberação de Medicamentos , Imunoterapia , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Ácidos Esteáricos/química , Adenina/análogos & derivados , Animais , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Ácido N-Acetilneuramínico/síntese química , Nanopartículas/ultraestrutura , Neoplasias/imunologia , Fosfatidilgliceróis/química , Piperidinas , Espectroscopia de Prótons por Ressonância Magnética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Células RAW 264.7 , Ratos Wistar , Ácidos Esteáricos/síntese químicaRESUMO
KEY MESSAGE: WUSCHEL-RELATED HOMEOBOX 11 establishes the acquisition of pluripotency during callus formation and accomplishes de novo shoot formation by regulating key transcription factors in poplar. De novo shoot regeneration is a prerequisite for propagation and genetic engineering of elite cultivars in forestry. However, the regulatory mechanism of de novo organogenesis is poorly understood in tree species. We previously showed that WUSCHEL (WUS)-RELATED HOMEOBOX 11 (PtWOX11) of the hybrid poplar clone 84K (Populus alba × P. glandulosa) promotes de novo root formation. In this study, we found that PtWOX11 also regulates de novo shoot regeneration in poplar. The overexpression of PtWOX11 enhanced de novo shoot formation, whereas overexpression of PtWOX11 fused with the transcriptional repressor domain (PtWOX11-SRDX) or reduced expression of PtWOX11 inhibited this process, indicating that PtWOX11 promotes de novo shoot organogenesis. Although PtWOX11 promotes callus formation, overexpression of PtWOX11 and PtWOX11-SRDX also produced increased and decreased numbers of de novo shoots per unit weight, respectively, implying that PtWOX11 promotes de novo shoot organogenesis partially by regulating the intrinsic mechanism of shoot development. RNA-seq and qPCR analysis further revealed that PtWOX11 activates the expression of PLETHORA1 (PtPLT1) and PtPLT2, whose Arabidopsis paralogs establish the acquisition of pluripotency, during incubation on callus-inducing medium. Moreover, PtWOX11 activates the expression of shoot-promoting factors and meristem regulators such as CUP-SHAPED COTYLEDON2 (PtCUC2), PtCUC3, WUS and SHOOT MERISTEMLESS to fulfill shoot regeneration during incubation on shoot-inducing medium. These results suggest that PtWOX11 acts as a central regulator of the expression of key genes to cause de novo shoot formation. Our studies further provide a possible means to genetically engineer economically important tree species for their micropropagation.