Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208298

RESUMO

Lysine succinylation is an important post-translational modification, whose abnormalities are closely related to the occurrence and development of many diseases. Therefore, exploring effective methods to identify succinylation sites is helpful for disease treatment and research of related drugs. However, most existing computational methods for the prediction of succinylation sites are still based on machine learning. With the increasing volume of data and complexity of feature representations, it is necessary to explore effective deep learning methods to recognize succinylation sites. In this paper, we propose a multilane dense convolutional attention network, MDCAN-Lys. MDCAN-Lys extracts sequence information, physicochemical properties of amino acids, and structural properties of proteins using a three-way network, and it constructs feature space. For each sub-network, MDCAN-Lys uses the cascading model of dense convolutional block and convolutional block attention module to capture feature information at different levels and improve the abstraction ability of the network. The experimental results of 10-fold cross-validation and independent testing show that MDCAN-Lys can recognize more succinylation sites, which is consistent with the conclusion of the case study. Thus, it is worthwhile to explore deep learning-based methods for the recognition of succinylation sites.


Assuntos
Previsões/métodos , Lisina/química , Processamento de Proteína Pós-Traducional/fisiologia , Ácido Succínico/química , Algoritmos , Sequência de Aminoácidos/genética , Aminoácidos/química , Animais , Biologia Computacional/métodos , Bases de Dados de Proteínas , Humanos , Aprendizado de Máquina , Proteínas/química
2.
J Bioinform Comput Biol ; 17(6): 1950035, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32019417

RESUMO

As a tool of interpreting and analyzing genetic data, gene regulatory network (GRN) could reveal regulatory relationships between genes, proteins, and small molecules, as well as understand physiological activities and functions within biological cells, interact in pathways, and how to make changes in the organism. Traditional GRN research focuses on the analysis of the regulatory relationships through the average of cellular gene expressions. These methods are difficult to identify the cell heterogeneity of gene expression. Existing methods for inferring GRN using single-cell transcriptional data lack expression information when genes reach steady state, and the high dimensionality of single-cell data leads to high temporal and spatial complexity of the algorithm. In order to solve the problem in traditional GRN inference methods, including the lack of cellular heterogeneity information, single-cell data complexity and lack of steady-state information, we propose a method for GRN inference using single-cell transcription and gene knockout data, called SINgle-cell transcription data-KNOckout data (SIN-KNO), which focuses on combining dynamic and steady-state information of regulatory relationship contained in gene expression. Capturing cell heterogeneity information could help understand the gene expression difference in different cells. So, we could observe gene expression changes more accurately. Gene knockout data could observe the gene expression levels at steady-state of all other genes when one gene is knockout. Classifying the genes before analyzing the single-cell data could determine a large number of non-existent regulation, greatly reducing the number of regulation required for inference. In order to show the efficiency, the proposed method has been compared with several typical methods in this area including GENIE3, JUMP3, and SINCERITIES. The results of the evaluation indicate that the proposed method can analyze the diversified information contained in the two types of data, establish a more accurate gene regulation network, and improve the computational efficiency. The method provides a new thinking for dealing with large datasets and high computational complexity of single-cell data in the GRN inference.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes/métodos , Redes Reguladoras de Genes , Diferenciação Celular/genética , Linhagem Celular , Simulação por Computador , Visualização de Dados , Bases de Dados Genéticas , Escherichia coli/genética , Humanos , Modelos Lineares , Macrófagos/citologia , Modelos Genéticos , Saccharomyces cerevisiae/genética , Análise de Célula Única
3.
Front Pharmacol ; 10: 1592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32047432

RESUMO

Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs and produce therapeutic effects. Therefore, the prediction of drug-target interactions (DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs and targets is of essence for improving the accuracy of prediction of DTIs. However, existing studies with multiple similarity measures ignored the global structure information of similarity measures, and required manual extraction features of drug-target pairs, ignoring the non-linear relationship among features. In this paper, we proposed a novel approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with restart method and positive pointwise mutual information to calculate the topological similarity matrices of drugs and targets, capturing the global structure information of similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple topological similarity matrices of drugs and targets, automatically learned the low-dimensional features of drugs and targets, and applied deep neural network to predict DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-validation settings indicated that MDADTI is superior to the other four baseline methods. In addition, we validated the predictions of the MDADTI in six drug-target interactions reference databases, and the results showed that MDADTI can effectively identify unknown DTIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA