RESUMO
With the rising emphasis on food safety, technology to rapidly identify Staphylococcus aureus (S. aureus) is of great significance. Herein, we developed a novel electrochemical biosensor based on the CRISPR/Cas9 system and rolling circle amplification (RCA)-assisted "silver chain"-linked gold interdigital electrodes (Au-IDE). This sensor utilizes RCA to create DNA long chains that span the Au-IDE, and CRISPR/Cas9 as a recognition component to recognize capture/target dsDNA. Additionally, we used silver staining technology to improve detection sensitivity. Then, we detected S. aureus through impedance changes that occurred when the silver chain between the Au-IDE was connected or broke, with a limit of detection (LOD) of 7 CFU/mL and a detection time of 1.5 h. Lastly, we successfully employed this sensor to detect S. aureus in real food samples, making it a promising tool for food monitoring.
Assuntos
Técnicas Biossensoriais , Ouro , Staphylococcus aureus/genética , Técnicas de Amplificação de Ácido Nucleico , Sistemas CRISPR-Cas , Eletrodos , Limite de Detecção , Técnicas EletroquímicasRESUMO
Simple and accurate in vivo monitoring of Fe3+ is essential for gaining a better understanding of its role in physiological and pathological processes. A novel fluorescent probe was synthesized via in situ solid-state polymerization of 3,4-ethylenedioxythiophene (PEDOT) in the pore channels of a covalent organic framework (COF). The PEDOT@COF fluorescent probe exhibited an absolute quantum yield (QY) 3 times higher than COF. In the presence of Fe3+ the PEDOT@COF 475 nm fluorescence emission, 365 nm excitation, is quenched within 180 s. Fluorescence quenching is linear with Fe3+ in the concentration range of 0-960 µM, with a detection limit of 0.82 µM. The fluorescence quenching mechanism was attributed to inner filter effect (IEF), photoinduced electron transfer (PET) and static quenching (SQE) between PEDOT@COF and Fe3+. A paper strip-based detector was designed to facilitate practical applicability, and the PEDOT@COF probe successfully applied to fluorescence imaging of Fe3+ levels in vivo. This work details a tool of great promise for enabling detailed investigations into the role of Fe3+ in physiological and pathological diseases.