Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 37, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374244

RESUMO

Benign airway stenosis (BAS) means airway stenosis or obstruction that results from a variety of non-malignant factors, including tuberculosis, trauma, benign tumors, etc. In consideration of the currently limited research on microRNAs in BAS, this study aimed to explore the role and mechanism of miR-34c-5p in BAS. The expression of miR-34c-5p in BAS granulation tissues showed a significant down-regulation compared with the normal control group. Moreover, miR-34c-5p mimics suppressed the proliferation and differentiation of human bronchial fibroblasts (HBFs) and the epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBE). Conversely, miR-34c-5p inhibitors aggravated those effects. A dual-luciferase reporter assay confirmed that miR-34c-5p can target MDMX rather than Notch1. The over-expression of MDMX can reverse the inhibiting effect of miR-34c-5p on HBFs proliferation, differentiation and EMT. Furthermore, the expressions of tumor protein (p53) and PTEN were down-regulated following the over-expression of MDMX. In addition, the expressions of PI3K and AKT showed an up-regulation. In conclusion, miR-34c-5p was down-regulated in BAS and may inhibit fibroblast proliferation differentiation and EMT in BAS via the MDMX/p53 signaling axis. These findings expand the understanding of the role of miR-34c-5p and will help develop new treatment strategies for BAS.


Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Constrição Patológica , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-mdm2 , Obstrução das Vias Respiratórias/genética , Obstrução das Vias Respiratórias/patologia
2.
Sci Rep ; 13(1): 16134, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752167

RESUMO

Associated with high morbidity and mortality, lung adenocarcinoma (LUAD) is lacking in effective prognostic prediction and treatment. As chemotherapy drugs commonly used in clinics, microtubule-targeting agents (MTAs) are limited by high toxicity and drug resistance. This research aimed to analyze the expression profile of microtubule-associated genes (MAGs) in LUAD and explore their therapy efficiency and impact on prognosis. Key MAGs were identified as novel molecular targets for targeting microtubules. The LUAD project in The Cancer Genome Atlas (TCGA) database was used to identify differently expressed MAGs. On the one hand, a microtubule-related prognostic signature was constructed and validated, and its links with clinical characteristics and the immune microenvironment were analyzed. On the other hand, hub MAGs were obtained by a protein-protein interaction (PPI) network. Following the expression of hub MAGs, patients with LUAD were classified into two molecular subtypes. A comparison was made of the differences in half-maximal drug inhibitory concentration (IC50) and tumor mutational burden (TMB) between groups. In addition, the influence of MAGs on the anticancer efficacy of different therapies was explored. MAGs, which were included in both the prognosis signature and hub genes, were considered to have great value in prognosis and targeted therapy. They were identified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 154 differently expressed MAGs were discovered. For one thing, a microtubule-related prognostic signature based on 14 MAGs was created and identified in an external validation cohort. The prognostic signature was used as an independent prognostic factor. For another, 45 hub MAGs were obtained. In accordance with the expression profile of 45 MAGs, patients with LUAD were divided into two subtypes. Distinct differences were observed in TMB and IC50 values of popular chemotherapy and targeted drugs between subtypes. Finally, five genes were included in both the prognosis signature and hub genes, and identified by qRT-PCR. A microtubule-related prognosis signature that can serve as an independent prognostic factor was constructed. Microtubule subtype influenced the efficacy of different treatments and could be used to guide therapy selection. In this research, five key MAGs, including MYB proto-oncogene like 2 (MYBL2), nucleolar and spindle-associated protein 1 (NUSAP1), kinesin family member 4A (KIF4A), KIF15 and KIF20A, were verified and identified. They are promising biomarkers and therapeutic targets in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Genes cdc , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Microtúbulos , Proteínas Associadas aos Microtúbulos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral , Cinesinas/genética
3.
J Immunol Res ; 2022: 6567916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571564

RESUMO

Lung adenocarcinoma (LUAD) is the main pathological subtype of non-small-cell lung cancer. Endoplasmic reticulum stress (ERS) has been found to be involved in multiple tumor-related biological processes. At present, a comprehensive analysis of ERS-related genes in LUAD is still lacking. A total of 1034 samples from TCGA and GEO were used to screen differentially expressed genes. Further, Random Forest algorithm was utilized to screen characteristic genes related to prognosis. Then, LASSO Cox regression was used to construct a prognostic signature. Taking the median of signature score as the threshold, patients were separated into high-risk (HR) group and low-risk (LR) group. Tumor mutation burden (TMB), immune cell infiltration, cancer stem cell infiltration, expression of HLA, and immune checkpoints of the two risk groups were analyzed. TIDE score was used to evaluate the response of the two risk groups to immunotherapy. Finally, the gene expression was verified in clinical tissues with RT-qPCR. An eight-gene signature (ADRB2, AGER, CDKN3, GJB2, SFTPC, SLC2A1, SLC6A4, and SSR4) was constructed. TMB and cancer stem cell infiltration were higher in the HR group than the LR group. TIDE score and expression level of HLA were higher in the LR group than the HR group. Expression level of immune checkpoints, including CD28, CD27, IDO2, and others, were higher in the LR group. Multiple drugs approved by FAD, targeting ERS-related genes, were available for the treatment of LUAD. In summary, we established a stable prognostic model based on ERS-related genes to help the classification of LUAD patients and looked for new treatment strategies from aspects of immunity, tumor mutation, and tumor stem cell infiltration.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Proteínas da Membrana Plasmática de Transporte de Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA