Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826808

RESUMO

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.


Assuntos
Circulação Cerebrovascular , Desenho de Equipamento , Análise Espectral , Humanos , Circulação Cerebrovascular/fisiologia , Análise Espectral/instrumentação , Análise Custo-Benefício , Reprodutibilidade dos Testes , Dispositivos Eletrônicos Vestíveis , Razão Sinal-Ruído , Lasers , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Contraste de Manchas a Laser/instrumentação
2.
Nat Commun ; 15(1): 4713, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830852

RESUMO

Computational imaging methods empower modern microscopes to produce high-resolution, large field-of-view, aberration-free images. Fourier ptychographic microscopy can increase the space-bandwidth product of conventional microscopy, but its iterative reconstruction methods are prone to parameter selection and tend to fail under excessive aberrations. Spatial Kramers-Kronig methods can analytically reconstruct complex fields, but is limited by aberration or providing extended resolution enhancement. Here, we present APIC, a closed-form method that weds the strengths of both methods while using only NA-matching and darkfield measurements. We establish an analytical phase retrieval framework which demonstrates the feasibility of analytically reconstructing the complex field associated with darkfield measurements. APIC can retrieve complex aberrations of an imaging system with no additional hardware and avoids iterative algorithms, requiring no human-designed convergence metrics while always obtaining a closed-form complex field solution. We experimentally demonstrate that APIC gives correct reconstruction results where Fourier ptychographic microscopy fails when constrained to the same number of measurements. APIC achieves 2.8 times faster computation using image tile size of 256 (length-wise), is robust against aberrations compared to Fourier ptychographic microscopy, and capable of addressing aberrations whose maximal phase difference exceeds 3.8π when using a NA 0.25 objective in experiment.

3.
J Pathol ; 263(1): 89-98, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38433721

RESUMO

Brain metastases can occur in nearly half of patients with early and locally advanced (stage I-III) non-small cell lung cancer (NSCLC). There are no reliable histopathologic or molecular means to identify those who are likely to develop brain metastases. We sought to determine if deep learning (DL) could be applied to routine H&E-stained primary tumor tissue sections from stage I-III NSCLC patients to predict the development of brain metastasis. Diagnostic slides from 158 patients with stage I-III NSCLC followed for at least 5 years for the development of brain metastases (Met+, 65 patients) versus no progression (Met-, 93 patients) were subjected to whole-slide imaging. Three separate iterations were performed by first selecting 118 cases (45 Met+, 73 Met-) to train and validate the DL algorithm, while 40 separate cases (20 Met+, 20 Met-) were used as the test set. The DL algorithm results were compared to a blinded review by four expert pathologists. The DL-based algorithm was able to distinguish the eventual development of brain metastases with an accuracy of 87% (p < 0.0001) compared with an average of 57.3% by the four pathologists and appears to be particularly useful in predicting brain metastases in stage I patients. The DL algorithm appears to focus on a complex set of histologic features. DL-based algorithms using routine H&E-stained slides may identify patients who are likely to develop brain metastases from those who will remain disease free over extended (>5 year) follow-up and may thus be spared systemic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Algoritmos , Patologistas
4.
ArXiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38351942

RESUMO

In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF non-invasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. This study aims to introduce a compact speckle visibility spectroscopy (SVS) device designed for non-invasive CBF measurements, offering cost-effectiveness and scalability while tracking CBF with remarkable sensitivity and temporal resolution. The wearable hardware has a modular design approach consisting solely of a laser diode as the source and a meticulously selected board camera as the detector. They both can be easily placed on a subject's head to measure CBF with no additional optical elements. The SVS device can achieve a sampling rate of 80 Hz with minimal susceptibility to external disturbances. The device also achieves better SNR compared with traditional fiber-based SVS devices, capturing about 70 times more signal and showing superior stability and reproducibility. It is designed to be paired and distributed in multiple configurations around the head, and measure signals that exceed the quality of prior optical CBF measurement techniques. Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing non-invasive cerebral monitoring technologies.

5.
Biomed Opt Express ; 14(9): 4964-4978, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791277

RESUMO

Recently, speckle visibility spectroscopy (SVS) was non-invasively applied on the head to monitor cerebral blood flow. The technique, using a multi-pixel detecting device (e.g., camera), allows the detection of a larger number of speckles, increasing the proportion of light that is detected. Due to this increase, it is possible to collect light that has propagated deeper through the brain. As a direct consequence, cerebral blood flow can be monitored. However, isolating the cerebral blood flow from the other layers, such as the scalp or skull components, remains challenging. In this paper, we report our investigations on the depth-sensitivity of laser interferometry speckle visibility spectroscopy (iSVS). Specifically, we varied the depth of penetration of the laser light into the head by tuning the source-to-detector distance, and identified the transition point at which cerebral blood flow in humans and rabbits starts to be detected.

6.
Cell Rep Med ; 4(10): 101198, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37716353

RESUMO

The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.


Assuntos
Ácidos Nucleicos Livres , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida , Ácidos Nucleicos Livres/genética , Biomarcadores , Células Neoplásicas Circulantes/patologia
7.
Opt Express ; 31(19): 31253-31266, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710649

RESUMO

Diffusing wave spectroscopy (DWS) is a group of techniques used to measure the dynamics of a scattering medium in a non-invasive manner. DWS methods rely on detecting the speckle light field from the moving scattering medium and measuring the speckle decorrelation time to quantify the scattering medium's dynamics. For DWS, the signal-to-noise (SNR) is determined by the ratio between measured decorrelation time to the standard error of the measurement. This SNR is often low in certain applications because of high noise variances and low signal intensity, especially in biological applications with restricted exposure and emission levels. To address this photon-limited signal-to-noise ratio problem, we investigated, theoretically and experimentally, the SNR of an interferometric speckle visibility spectroscopy (iSVS) compared to more traditional DWS methods. We found that iSVS can provide excellent SNR performance through its ability to overcome camera noise. We also proved an iSVS system has more relaxed constraints on the reference beam properties. For an iSVS system to function properly, we only require the reference beam to exhibit local temporal stability, while incident angle, reference phase and intensity uniformity do not need to be constrained. This flexibility can potentially enable more unconventional iSVS implementation schemes.

8.
Opt Lett ; 48(15): 4161-4164, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527143

RESUMO

Holography based on Kramers-Kronig relations (KKR) is a promising technique due to its high-space-bandwidth product. However, the absence of an iterative process limits its noise robustness, primarily stemming from the lack of a regularization constraint. This Letter reports a generalized framework aimed at enhancing the noise robustness of KKR holography. Our proposal involves employing the Hilbert-Huang transform to connect the real and imaginary parts of an analytic function. The real part is initially processed by bidimensional empirical mode decomposition into a series of intrinsic mode functions (IMFs) and a residual term. They are then selected to remove the noise and bias terms. Finally, the imaginary part can be obtained using the Hilbert transform. In this way, we efficiently suppress the noise in the synthetic complex function, facilitating high-fidelity wavefront reconstruction using ∼20% of the exposure time required by existing methods. Our work is expected to expand the applications of KKR holography, particularly in low phototoxicity biological imaging and other related scenarios.

9.
Sci Rep ; 13(1): 5708, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029224

RESUMO

Circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) from whole blood are emerging as important biomarkers that potentially aid in cancer diagnosis and prognosis. The microfilter technology provides an efficient capture platform for them but is confounded by two challenges. First, uneven microfilter surfaces makes it hard for commercial scanners to obtain images with all cells in-focus. Second, current analysis is labor-intensive with long turnaround time and user-to-user variability. Here we addressed the first challenge through developing a customized imaging system and data pre-processing algorithms. Utilizing cultured cancer and CAF cells captured by microfilters, we showed that images from our custom system are 99.3% in-focus compared to 89.9% from a top-of-the-line commercial scanner. Then we developed a deep-learning-based method to automatically identify tumor cells serving to mimic CTC (mCTC) and CAFs. Our deep learning method achieved precision and recall of 94% (± 0.2%) and 96% (± 0.2%) for mCTC detection, and 93% (± 1.7%) and 84% (± 3.1%) for CAF detection, significantly better than a conventional computer vision method, whose numbers are 92% (± 0.2%) and 78% (± 0.3%) for mCTC and 58% (± 3.9%) and 56% (± 3.5%) for CAF. Our custom imaging system combined with deep learning cell identification method represents an important advance on CTC and CAF analysis.


Assuntos
Fibroblastos Associados a Câncer , Aprendizado Profundo , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Fibroblastos Associados a Câncer/patologia , Biomarcadores , Prognóstico , Linhagem Celular Tumoral
10.
Opt Express ; 30(12): 20321-20332, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224781

RESUMO

Over the past decade, the research field of Fourier Ptychographic Microscopy (FPM) has seen numerous innovative developments that significantly expands its utility. Here, we report a high numerical aperture (NA) FPM implementation that incorporates some of these innovations to achieve a synthetic NA of 1.9 - close to the maximum possible synthetic NA of 2 for a free space FPM system. At this high synthetic NA, we experimentally found that it is vital to homogenize the illumination field in order to achieve the best resolution. Our FPM implementation has a full pitch resolution of 266 nm for 465 nm light, and depth of field of 3.6 µm. In comparison, a standard transmission microscope (incoherent) with close to maximum possible NA of 0.95 has a full pitch resolution of 318 nm for 465 nm light, and depth of field of 0.65 µm. While it is generally assumed that a free-space coherent imaging system and a free-space incoherent imaging system operating at their respective maximum NA should give comparable resolution, we experimentally find that an FPM system significantly outperforms its incoherent standard microscopy counterpart in resolution by a factor of 20%. Coupled with FPM's substantially longer effective depth of field (5.5 times longer), our work indicates that, in the near-maximum NA operation regime, the FPM has significant resolution and depth of field advantages over incoherent standard microscopy.

11.
J Pathol Inform ; 13: 100119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268073

RESUMO

Context: Cytology is the study of whole cells in diagnostic pathology. Unlike standard histologic thinly sliced specimens, cytologic preparations consist of preparations of whole cells where cells commonly cluster and aggregate. As such, cytology preparations are generally much thicker than histologic slides, resulting in large patches of defocus when examined under the microscope. A diagnostic aggregate of cells often cannot be viewed in focus together, requiring pathologists to continually manipulate the focal plane, complicating the task of accurately assessing the entire cellular aggregate and thus in making a diagnosis. Further, it is extremely difficult to acquire useful uniformly in-focus digital images of cytology preparations for applications such as remote diagnostic evaluations and artificial intelligence models. The predominant current method to address this issue is to acquire digital images at multiple focal planes of the entire slide, which demands long scanning time, complex and expensive scanning systems, and huge storage capacity. Aims: Here we report a unique imaging method that can acquire cytologic images efficiently and computationally render all-in-focus digital images that are highly compact. Methods and material: This method applies a metric-based digital refocusing to microscopy data collected with a Fourier ptychographic microscope (FPM). The digitally refocused patches of images are then synthesized into an all-in-focus image. Results: We report all-in-focus FPM results of thyroid fine needle aspiration (FNA) cytology samples, demonstrating our method's ability to overcome the height variance of 30 µm caused by cell aggregation, and rendering images at high resolution (corresponds to a standard microscope with objective NA of 0.75) and that are all-in-focus. Conclusions: This technology is applicable to standard microscopes, and we believe can have an impact on diagnostic accuracy as well as ease and speed of diagnosing challenging specimens. While we focus on cytology slides here, we anticipate this technology's advantages will translate well for histology applications. This technique also addresses the issue of remote rapid evaluation of cytology preparations. Finally, we believe that by resolving the focus heterogeneity issues in standard digital images, this technique is a critical advance for applying machine learning to cytology specimens.

12.
Biomed Opt Express ; 13(4): 2068-2081, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519275

RESUMO

Light scattering poses a challenge for imaging deep in scattering media as the ballistic light exponentially attenuates with depth. In contrast to the ballistic light, the multiply scattered light penetrates deeper and also contains information about the sample. One technique to image deeper is to selectively detect only a subset of the multiply scattered light, namely the 'snake' photons, which are predominantly forward scattered and retain more direct information than the more strongly scattered light. In this work, we develop a technique, termed speckle-resolved optical coherence tomography (srOCT), for efficiently detecting these 'snake' photons to enable imaging deeper in scattering media. The system couples spatio-angular filtering with speckle-resolved interferometric detection to preferentially and efficiently detect the weakly scattered 'snake' photons. With our proof-of-concept system, we demonstrate depth-resolved imaging beyond the ballistic limit, up to a depth of 90 round-trip MFPs in a scattering phantom and a depth of 4.5 mm of chicken tissue at 0.4 mm axial and lateral resolution.

13.
Sci Rep ; 12(1): 2404, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165311

RESUMO

Polarization of the mammalian embryo at the right developmental time is critical for its development to term and would be valuable in assessing the potential of human embryos. However, tracking polarization requires invasive fluorescence staining, impermissible in the in vitro fertilization clinic. Here, we report the use of artificial intelligence to detect polarization from unstained time-lapse movies of mouse embryos. We assembled a dataset of bright-field movie frames from 8-cell-stage embryos, side-by-side with corresponding images of fluorescent markers of cell polarization. We then used an ensemble learning model to detect whether any bright-field frame showed an embryo before or after onset of polarization. Our resulting model has an accuracy of 85% for detecting polarization, significantly outperforming human volunteers trained on the same data (61% accuracy). We discovered that our self-learning model focuses upon the angle between cells as one known cue for compaction, which precedes polarization, but it outperforms the use of this cue alone. By compressing three-dimensional time-lapsed image data into two-dimensions, we are able to reduce data to an easily manageable size for deep learning processing. In conclusion, we describe a method for detecting a key developmental feature of embryo development that avoids clinically impermissible fluorescence staining.


Assuntos
Polaridade Celular , Aprendizado Profundo , Embrião de Mamíferos/citologia , Animais , Corantes/química , Embrião de Mamíferos/química , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Fertilização in vitro , Humanos , Camundongos , Coloração e Rotulagem
14.
Nat Commun ; 12(1): 2411, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893304

RESUMO

For the past decade, optical wavefront shaping has been the standard technique to control light through scattering media. Implicit in this dominance is the assumption that manipulating optical interference is a necessity for optical control through scattering media. In this paper, we challenge this assumption by reporting on an alternate approach for light control through a disordered scattering medium - optical-channel-based intensity streaming (OCIS). Instead of actively tuning the interference between the optical paths via wavefront shaping, OCIS controls light and transmits information through scattering media through linear intensity operations. We demonstrate a set of OCIS experiments that connect to some wavefront shaping implementations, i.e. iterative wavefront optimization, digital optical phase conjugation, image transmission through transmission matrix, and direct imaging through scattering media. We experimentally created focus patterns through scattering media on a sub-millisecond timescale. We also demonstrate that OCIS enables a scattering medium mediated secure optical communication application.


Assuntos
Luz , Dispositivos Ópticos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Espalhamento de Radiação , Algoritmos , Modelos Teóricos , Fenômenos Ópticos
15.
Sci Rep ; 11(1): 3544, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574405

RESUMO

Global anal cancer incidence is increasing. High resolution anoscopy (HRA) currently screens for anal cancer, although the definitive test remains unknown. To improve on intraluminal imaging of the anal canal, we conducted a first-in-human study to determine feasibility and safety of a high-resolution, wide field-of-view scanning endoscope. Fourteen patients, under an IRB-approved clinical study, underwent exam under anesthesia, HRA, and imaging with the experimental device. HRA findings were photographed using an in-line camera attached to the colposcope and compared with the scanning endoscope images. Patients were followed up within 2 weeks of the procedure. The imaging device is inserted into the anal canal and the intraluminal surface is digitally photographed in 10 s and uploaded to a computer monitor for review. Ten patients completed imaging with the device. Three patients were not imaged due to severe anal stenosis. One patient was not imaged due to technical device malfunction. The device images were compared to the HRA images. No adverse event attributable to the device was reported. The intraluminal scanning endoscope can be used for circumferential anal canal imaging and is safe for clinical use. Future clinical studies are needed to evaluate the performance of this device.


Assuntos
Doenças do Ânus/diagnóstico , Detecção Precoce de Câncer , Endoscópios Gastrointestinais , Intestinos/diagnóstico por imagem , Lesões Pré-Cancerosas/diagnóstico , Idoso , Canal Anal/diagnóstico por imagem , Canal Anal/patologia , Doenças do Ânus/diagnóstico por imagem , Doenças do Ânus/patologia , Colposcópios/normas , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Estudos de Viabilidade , Feminino , Humanos , Intestinos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/patologia
16.
J Pharm Sci ; 109(11): 3292-3299, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32679217

RESUMO

Prefilled syringes (PFSs) are commonly used for parenteral delivery of protein therapeutics. In PFSs, the inner surface of the syringe barrel is typically coated with silicone oil for lubrication. The total amount of silicone oil as well as its distribution can impact syringe functionality and particle formation. However, methods to non-destructively characterize the silicone oil distribution are limited. In this paper, we developed a method to visualize and quantify the relative distribution of silicone oil in unfilled syringes using a custom-built multi-color interferometric imaging system. We then applied the system in a preliminary study to investigate the impact of the silicone oil distribution on the number of particles formed in solution after filling and extrusion for two different types of syringes. The syringe type with significantly lower particle counts also exhibited significantly more homogeneous silicone oil distributions. Within syringe types, no significant association was found between silicone oil distribution and particle formation. Our method can be used in further studies that investigate the impact of syringe siliconization on PFS functionality and particle formation.


Assuntos
Óleos de Silicone , Seringas , Lubrificação
17.
Opt Lett ; 45(11): 2973-2976, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479436

RESUMO

Advances in human brain imaging technologies are critical to understanding how the brain works and the diagnosis of brain disorders. Existing technologies have different drawbacks, and the human skull poses a great challenge for pure optical and ultrasound imaging technologies. Here we demonstrate the feasibility of using ultrasound-modulated optical tomography, a hybrid technology that combines both light and sound, to image through human skulls. Single-shot off-axis holography was used to measure the field of the ultrasonically tagged light. This Letter paves the way for imaging the brain noninvasively through the skull, with optical contrast and a higher spatial resolution than that of diffuse optical tomography.


Assuntos
Fenômenos Ópticos , Crânio/diagnóstico por imagem , Tomografia/métodos , Ondas Ultrassônicas , Holografia , Humanos , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
18.
Opt Lett ; 45(7): 1734-1737, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235986

RESUMO

We report a single-shot three-dimensional (3D) topographical imaging method, optical coherence factor (OCF) imaging, which uses optical coherence as the contrast mechanism to acquire the surface height (${z}$z-direction) information of an object. A 4-f imaging system records the light field reflected from the surface of the object. The illumination of the imaging system comes from a laser source with the optical coherence length comparable to the depth of field (DoF) of the optical system. Off-axis holographic recording is used to retrieve the coherence factor from the interference fringes, which is then converted to ${z}$z-direction information. In this experiment, we validate our 3D imaging results comparing them to axial scanning full-field optical coherence tomography images. We also analyze the contrast mechanism of OCF and show that it is able to provide additional information over conventional coherent and incoherent imaging using the same imaging setup. This single-shot computationally efficient method may have potential applications in industrial quality control inspection.

19.
J Biomed Opt ; 25(2): 1-12, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32103649

RESUMO

SIGNIFICANCE: Ultrasound-assisted optical imaging techniques, such as ultrasound-modulated optical tomography, allow for imaging deep inside scattering media. In these modalities, a fraction of the photons passing through the ultrasound beam is modulated. The efficiency by which the photons are converted is typically referred to as the ultrasound modulation's "tagging efficiency." Interestingly, this efficiency has been defined in varied and discrepant fashion throughout the scientific literature. AIM: The aim of this study is the ultrasound tagging efficiency in a manner consistent with its definition and experimentally verify the contributive (or noncontributive) relationship between the mechanisms involved in the ultrasound optical modulation process. APPROACH: We adopt a general description of the tagging efficiency as the fraction of photons traversing an ultrasound beam that is frequency shifted (inclusion of all frequency-shifted components). We then systematically studied the impact of ultrasound pressure and frequency on the tagging efficiency through a balanced detection measurement system that measured the power of each order of the ultrasound tagged light, as well as the power of the unmodulated light component. RESULTS: Through our experiments, we showed that the tagging efficiency can reach 70% in a scattering phantom with a scattering anisotropy of 0.9 and a scattering coefficient of 4 mm - 1 for a 1-MHz ultrasound with a relatively low (and biomedically acceptable) peak pressure of 0.47 MPa. Furthermore, we experimentally confirmed that the two ultrasound-induced light modulation mechanisms, particle displacement and refractive index change, act in opposition to each other. CONCLUSION: Tagging efficiency was quantified via simulation and experiments. These findings reveal avenues of investigation that may help improve ultrasound-assisted optical imaging techniques.


Assuntos
Imagem Óptica/métodos , Espalhamento de Radiação , Ultrassonografia/métodos , Anisotropia , Simulação por Computador , Óptica e Fotônica , Imagens de Fantasmas
20.
Opt Express ; 27(18): 24923-24937, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510373

RESUMO

Due to the chromatic dispersion properties inherent in all optical materials, even the best-designed multispectral objective will exhibit residual chromatic aberration. Here, we demonstrate a multispectral microscope with a computational scheme based on the Fourier ptychographic microscopy (FPM) to correct these effects in order to render undistorted, in-focus images. The microscope consists of 4 spectral channels ranging from 405 nm to 1552 nm. After the computational aberration correction, it can achieve isotropic resolution enhancement as verified with the Siemens star sample. We image a flip-chip to show the promise of our system to conduct fault detection on silicon chips. This computational approach provides a cost-efficient strategy for high quality multispectral imaging over a broad spectral range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA