Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832484

RESUMO

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Assuntos
Dípteros , Esterco , Animais , Larva/genética , Esterco/análise , Galinhas/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Dípteros/genética , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Antibacterianos/farmacologia
2.
Sci Total Environ ; 879: 163065, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966826

RESUMO

The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.


Assuntos
Compostagem , Dípteros , Humanos , Suínos , Animais , Larva , Esterco/microbiologia , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos
3.
Sci Total Environ ; 811: 151371, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34740641

RESUMO

Antibiotics are challenging to degrade and are excreted by livestock which results in environmental pollution. In this paper, we demonstrated that environmentally friendly manure bioremediation performed by black soldier fly larvae (BSFL) is a wise alternative, which could effectively degrade ciprofloxacin (CIP) by approached 85.48% in artificial diet and 84.22% in poultry manure within 12 days. They are up to 2.5-4.0 fold more than that achieved by natural fermentation. The five CIP-degrading strains were isolated from the larval gut, two of which, named by Klebsiella pneumoniae BSFLG-CIP1 and Proteus mirabilis BSFLG-CIP5, could degraded CIP by nearly 98.22% and 97.83% in vitro, respectively. When the intestinal isolates were re-inoculated to sterile BSFL system, the degradation level significantly increased up to 82.38%, comparing with the sterile BSFL system (21.76%). It is proved that the larvae intestinal microbiota might carry out this highly-efficient CIP-degradation. Furthermore, seven possible metabolites were identified for CIP-degradation in vitro, and they were referring three main potential degrading mechanisms of hydroxylize, piperazine ring substitute and cleavage, and quinoline ring cleavage. In conclusion, the present study may provide a strategy to reduce antibiotics pollution in animal waste through bioremediation with BSFL and adjusted intestinal microbes.


Assuntos
Ciprofloxacina , Dípteros , Animais , Larva , Gado , Esterco
4.
Microb Biotechnol ; 14(3): 886-896, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32449587

RESUMO

The potential utility of black soldier fly larvae (BSFL) to convert animal waste into harvested protein or lipid sources for feeding animal or producing biodiesel provides a new strategy for agricultural waste management. In this study, the taxonomic structure and potential metabolic and nutrient functions of the intestinal bacterial communities of BSFL were investigated in chicken and swine manure conversion systems. Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla in the BSFL gut in both the swine and chicken manure systems. After the larvae were fed manure, the proportion of Proteobacteria in their gut significantly decreased, while that of Bacteroidetes remarkably increased. Compared with the original intestinal bacterial community, approximately 90 and 109 new genera were observed in the BSFL gut during chicken and swine manure conversion, and at least half of the initial intestinal genera found remained in the gut during manure conversion. This result may be due to the presence of specialized crypts or paunches that promote microbial persistence and bacteria-host interactions. Ten core genera were found in all 21 samples, and the top three phyla among all of the communities in terms of relative abundance were Proteobacteria, Firmicutes and Bacteroidetes. The nutrient elements (OM, TN, TP, TK and CF) of manure may partly affect the succession of gut bacterial communities with one another, while TN and CF are strongly positively correlated with the relative abundance of Providencia. Some bacterial taxa with the reported ability to synthesize amino acids, Rhizobiales, Burkholderia, Bacteroidales, etc., were also observed in the BSFL gut. Functional analysis based on genes showed that intestinal microbes potentially contribute to the nutrition of BSFL and the high-level amino acid metabolism may partly explain the biological mechanisms of protein accumulation in the BSFL body. These results are helpful in understanding the biological mechanisms of high-efficiency nutrient conversion in BSFL associated with intestinal microbes.


Assuntos
Dípteros , Esterco , Animais , Larva , Gado , Nutrientes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA