Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761906

RESUMO

Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.


Assuntos
Fibroínas , Proteínas Intrinsicamente Desordenadas , Aranhas , Aranhas/química , Animais , Proteínas Intrinsicamente Desordenadas/química , Fibroínas/química , Seda/química , Concentração de Íons de Hidrogênio , Domínios Proteicos , Multimerização Proteica , Sequência de Aminoácidos
2.
J Biomol NMR ; 78(2): 87-94, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530516

RESUMO

The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter S2 to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone 1H-15N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone 1H-15N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.


Assuntos
Aprendizado de Máquina , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas , Proteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos
3.
J Am Chem Soc ; 146(7): 4455-4466, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335066

RESUMO

Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.


Assuntos
Citocromos c , Mitocôndrias , Citocromos c/química , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Membranas Mitocondriais/metabolismo
4.
Sci Adv ; 9(36): eadi8157, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672581

RESUMO

Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C. However, what defines their specificities remain poorly understood. Here, we developed a genetic glycoengineering platform by reprogramming the capsular polysaccharide pathways in Streptococcus pneumoniae to interrogate GT specificity and manipulate glycan structures. Our findings suggest that the central cleft of GT-B enzymes is important for determining acceptor specificity. The constraint of the glycoengineering platform was partially alleviated when the specificity of the precursor transporter was reduced, indicating that the transporter contributes to the overall fidelity of glycan synthesis. We also modified the pneumococcal capsule to produce several medically important mammalian glycans, as well as demonstrated the importance of regiochemistry in a glycosidic linkage on binding lung epithelial cells. Our work provided mechanistic insights into GT specificity and an approach for investigating glycan functions.


Assuntos
Glicosiltransferases , Streptococcus pneumoniae , Animais , Glicosiltransferases/genética , Streptococcus pneumoniae/genética , Células Epiteliais , Glicosídeos , Proteínas de Membrana Transportadoras , Mamíferos
5.
Int J Biol Macromol ; 242(Pt 1): 124775, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169045

RESUMO

Spider silk is self-assembled from full-length silk proteins, and some silk protein fragments can also form silk-like fibers in vitro. However, the mechanism underlying the silk fiber formation is not understood well. In this study, we investigated the fiber formation of a single repetitive domain (RP) from a minor ampullate silk protein (MiSp). Our findings revealed that pH and salt concentration affect not only the stability of MiSp-RP but also its self-assembly into fibers and aggregates. Using nuclear magnetic resonance (NMR) spectroscopy, we solved the three-dimensional (3D) structure of MiSp RP in aqueous solution. On the basis of the structure and mutagenesis, we revealed that charge-dipole interactions are responsible for the pH- and salt-dependent properties of MiSp-RP. Our results indicate that fiber formation is regulated by a delicate balance between intermolecular and intramolecular interactions, rather than by the protein stability alone. These findings have implications for the design of silk proteins for mass production of spider silk.


Assuntos
Fibroínas , Aranhas , Animais , Seda/química , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Concentração de Íons de Hidrogênio , Aranhas/metabolismo , Fibroínas/química
6.
J Phys Chem Lett ; 14(11): 2772-2777, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36897994

RESUMO

Protein function, in many cases, is strongly coupled to the dynamics and conformational equilibria of the protein. The environment surrounding proteins is critical for their dynamics and can dramatically affect the conformational equilibria and subsequently the activities of proteins. However, it is unclear how protein conformational equilibria are modulated by their crowded native environments. Here we reveal that outer membrane vesicle (OMV) environments modulate the conformational exchanges of Im7 protein at its local frustrated sites and shift the conformation toward its ground state. Further experiments show both macromolecular crowding and quinary interactions with the periplasmic components stabilize the ground state of Im7. Our study highlights the key role that the OMV environment plays in the protein conformational equilibria and subsequently the conformation-related protein functions. Furthermore, the long-lasting nuclear magnetic resonance measurement time of proteins within OMVs indicates that they could serve as a promising system for investigating protein structures and dynamics in situ via nuclear magnetic spectroscopy.


Assuntos
Proteínas da Membrana Bacteriana Externa , Conformação Proteica , Proteínas da Membrana Bacteriana Externa/química , Espectroscopia de Ressonância Magnética
7.
Biophys J ; 121(21): 4024-4032, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196055

RESUMO

Intracellular transport of fatty acids involves binding of ligands to their carrier fatty acid binding proteins (FABPs) and interactions of ligand-free and -bound FABPs with membranes. Previous studies focused on ligand-free FABPs. Here, our amide hydrogen exchange data showed that oleic acid binding to human intestinal FABP (hIFABP) stabilizes the protein, most likely through enhancing the hydrogen-bonding network, and induces rearrangement of sidechains even far away from the ligand binding site. Using NMR relaxation techniques, we found that the ligand binding affects not only conformational exchanges between major and minor states but also the affinity of hIFABP to nanodiscs. Analyses of the relaxation and amide exchange data suggested that two minor native-like states existing in both ligand-free and -bound hIFABPs originate from global "breathing" motions, while one minor native-like state comes from local motions. The amide hydrogen exchange data also indicated that helix αII undergoes local unfolding through which ligands can exit from the binding cavity.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Humanos , Proteínas de Ligação a Ácido Graxo/química , Ácidos Graxos/metabolismo , Ligantes , Hidrogênio/metabolismo , Amidas , Ligação Proteica
8.
Biomacromolecules ; 23(4): 1643-1651, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35312302

RESUMO

Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.


Assuntos
Fibroínas , Aranhas , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes , Fibroínas/química , Fibroínas/genética , Estrutura Secundária de Proteína , Seda/química , Aranhas/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163405

RESUMO

Nanobodies, or VHHs, refer to the antigen-binding domain of heavy-chain antibodies (HCAbs) from camelids. They have been widely used as research tools for protein purification and structure determination due to their small size, high specificity, and high stability, overcoming limitations with conventional antibody fragments. However, animal immunization and subsequent retrieval of antigen-specific nanobodies are expensive and complicated. Construction of synthetic nanobody libraries using DNA oligonucleotides is a cost-effective alternative for immunization libraries and shows great potential in identifying antigen-specific or even conformation-specific nanobodies. This review summarizes and analyses synthetic nanobody libraries in the current literature, including library design and biopanning methods, and further discusses applications of antigen-specific nanobodies obtained from synthetic libraries to research.


Assuntos
Cadeias Pesadas de Imunoglobulinas/química , Biblioteca de Peptídeos , Anticorpos de Domínio Único/química , Animais , Antígenos/química , Antígenos/genética , Antígenos/imunologia , Camelus , Cromatografia de Afinidade , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
10.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641455

RESUMO

Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29-31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Chenopodium quinoa/química , Fragmentos de Peptídeos/farmacologia , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Proteínas de Plantas/química , Conformação Proteica , Homologia de Sequência
11.
Biophys J ; 120(21): 4672-4681, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600898

RESUMO

Fatty acid binding proteins (FABPs) can facilitate the transfer of long-chain fatty acids between intracellular membranes across considerable distances. The transfer process involves fatty acids, their donor membrane and acceptor membrane, and FABPs, implying that potential protein-membrane interactions exist. Despite intensive studies on FABP-membrane interactions, the interaction mode remains elusive, and the protein-membrane association and dissociation rates are inconsistent. In this study, we used nanodiscs (NDs) as mimetic membranes to investigate FABP-membrane interactions. Our NMR experiments showed that human intestinal FABP interacts weakly with both negatively charged and neutral membranes, but it prefers the negatively charged one. Through simultaneous analysis of NMR relaxation in the rotating-frame (R1ρ), relaxation dispersion, chemical exchange saturation transfer, and dark-state exchange saturation transfer data, we estimated the affinity of the protein to negatively charged NDs, the dissociation rate, and apparent association rate. We further showed that the protein in the ND-bound state adopts a conformation different from the native structure and the second helix is very likely involved in interactions with NDs. We also found a membrane-induced FABP conformational state that exists only in the presence of NDs. This state is native-like, different from other conformational states in structure, unbound to NDs, and in dynamic equilibrium with the ND-bound state.


Assuntos
Proteínas de Ligação a Ácido Graxo , Proteínas do Tecido Nervoso , Proteína 7 de Ligação a Ácidos Graxos , Ácidos Graxos , Humanos , Proteínas de Neoplasias
12.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531321

RESUMO

Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.


Assuntos
Fibroínas/química , Animais , Materiais Biocompatíveis , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Aranhas/metabolismo
13.
Biophys J ; 120(12): 2444-2453, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894215

RESUMO

The viral protease domain (NS3pro) of dengue virus is essential for virus replication, and its cofactor NS2B is indispensable for the proteolytic function. Although several NS3pro-NS2B complex structures have been obtained, the dynamic property of the complex remains poorly understood. Using NMR relaxation techniques, here we found that NS3pro-NS2B exists in both closed and open conformations that are in dynamic equilibrium on a submillisecond timescale in aqueous solution. Our structural information indicates that the C-terminal region of NS2B is disordered in the minor open conformation but folded in the major closed conformation. Using mutagenesis, we showed that the closed-open conformational equilibrium can be shifted by changing NS2B stability. Moreover, we revealed that the proteolytic activity of NS3pro-NS2B correlates well with the population of the closed conformation. Our results suggest that the closed-open conformational equilibrium can be used by both nature and humanity to control the replication of dengue virus.


Assuntos
Vírus da Dengue , Vírus da Dengue/metabolismo , Conformação Molecular , Peptídeo Hidrolases , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética
14.
Int J Biol Macromol ; 166: 1141-1148, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157141

RESUMO

Spider silk has remarkable physical and biocompatible properties. Investigation of structure-function relationship and self-assembly process of spidroins is necessary for uncovering the mechanism of silk fiber formation. Nevertheless, how the terminal domains initiate self-assembly of soluble tubuliform spidroins to form solid eggcase silk is still not fully understood. Here we investigate the roles of both terminal domains of tubuliform spidroin 1 (TuSp1) in the silk fiber formation. We found that interactions among the terminal domains drive rapid TuSp1 self-assembly and fiber formation, which is insensitive to pH changes from 6.0 to 7.0. These interactions also contribute to the spidroin chain alignment in fiber formation upon shear-force exposure. Structural analysis and site-directed mutagenesis identified eight critical surface-exposed residues involved in hydrophobic interactions among terminal domains. Spidroins with single-point mutations of these residues fail to form intermediate micelle-like structures. The structural docking model indicates that multiple terminal domains of TuSp1 may interact with each other based on hydrophobic interactions and surface complementarity, which may lead to forming the surface of the micelle-like structure. Our results provide new insights into the structural mechanism of eggcase silk formation and the basis for designing and producing novel biomaterials derived from spider eggcase silk.


Assuntos
Fibroínas/química , Interações Hidrofóbicas e Hidrofílicas , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos
15.
Curr Biol ; 31(2): 271-282.e5, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186551

RESUMO

Multicellular organisms employ fluid transport networks to overcome the limit of diffusion and promote essential long-distance transport. Connectivity and pressurization render these networks especially vulnerable to wounding. To mitigate this risk, animals, plants, and multicellular fungi independently evolved elaborate clotting and plugging mechanisms. In the septate filamentous fungi, membrane-bound organelles plug septal pores in wounded hyphae. By contrast, vegetative hyphae in the early-diverging Mucoromycota are largely aseptate, and how their hyphae respond to wounding is unknown. Here, we show that wounding in the Mucorales leads to explosive protoplasmic discharge that is rapidly terminated by protoplasmic gelation. We identify Mucoromycota-specific Gellin proteins, whose loss of function leads to uncontrolled wound-induced protoplasmic bleeding. Gellins contain ten related ß-trefoil Gll domains, each of which possesses unique features that impart distinct gelation-related properties: some readily unfold and form high-order sheet-like structures when subjected to mechanical force from flow, while others possess hydrophobic motifs that enable membrane binding. In cell-free reconstitution, sheet-like structures formed by a partial Gellin incorporate membranous organelles. Together, these data define a mechanistic basis for regulated protoplasmic gelation, and provide new design principles for the development of artificial flow-responsive biomaterials.


Assuntos
Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Mucor/fisiologia , Proteínas Fúngicas/genética , Hidrodinâmica , Hifas/citologia , Microscopia Intravital , Mutação com Perda de Função , Mucor/citologia , Domínios Proteicos , Multimerização Proteica/fisiologia
16.
Nucleic Acids Res ; 48(16): 9361-9371, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32710623

RESUMO

Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.


Assuntos
Resposta ao Choque Frio/genética , DNA/genética , RNA/genética , Proteína 1 de Ligação a Y-Box/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Humanos , Fosforilação/genética , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética
17.
Nat Commun ; 11(1): 2830, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503980

RESUMO

The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence.


Assuntos
Polaridade Celular , Proteínas Fúngicas/metabolismo , Miosina Tipo V/metabolismo , Neurospora crassa/metabolismo , Vesículas Secretórias/metabolismo , Proteínas Fúngicas/química , Hifas/citologia , Hifas/metabolismo , Miosina Tipo V/química , Neurospora crassa/citologia , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Mapas de Interação de Proteínas
18.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580280

RESUMO

Asia-Pacific NMR (APNMR) has been an important scientific event in the region, engaging a large number of NMR scientists from academia and industries [...].


Assuntos
Biologia Computacional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Publicações Periódicas como Assunto , Ásia , Humanos , Ilhas do Pacífico
19.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586030

RESUMO

Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen-deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.


Assuntos
Proteínas de Insetos/química , Multimerização Proteica , Seda/química , Aranhas/química , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
20.
Biophys J ; 118(2): 396-402, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31870540

RESUMO

Fatty acid binding proteins play an important role in the transportation of fatty acids. Despite intensive studies, how fatty acids enter the protein cavity for binding is still controversial. Here, a gap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the gap is locked by a disulfide bridge. According to its structure determined here by NMR, this variant has no obvious openings as the ligand entrance and the gap cannot be widened by internal dynamics. Nevertheless, it still takes up fatty acids and other ligands. NMR relaxation dispersion, chemical exchange saturation transfer, and hydrogen-deuterium exchange experiments show that the variant exists in a major native state, two minor native-like states, and two locally unfolded states in aqueous solution. Local unfolding of either ßB-ßD or helix 2 can generate an opening large enough for ligands to enter the protein cavity, but only the fast local unfolding of helix 2 is relevant to the ligand entry process.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Desdobramento de Proteína , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA