Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.595
Filtrar
1.
Dose Response ; 22(2): 15593258241251594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725454

RESUMO

Background: Acute lung injury (ALI) is a serious illness that has few treatment options available. Tribuloside, a natural flavonoid extracted from the Tribulus Terrestris plant in China, is potent in addressing many health issues such as headaches, dizziness, itching, and vitiligo. Objective: This study intends to explore the mechanisms of action of Tribuloside in treating ALI through a combination of network pharmacology and experimental validation. Methods: We obtained the 2D structure and SMILES number of Tribuloside from the PubChem database. We used the SwissTargetPrediction database to identify pharmacological targets. We found 1215 targets linked to ALI by examining the GeneCards database. We used the String database and Cytoscape software to create the "drug or disease-target" network as well as the protein-protein interactions (PPI). Key targets were identified by evaluating associated biological processes and pathway enrichment. A Venny Diagram showed 49 intersection points between Tribuloside and ALI. Molecular docking with AutoDockTools found that Tribuloside had a high affinity for IL6, BCL2, TNF, STAT3, IL1B, and MAPK3, the top 6 targets in the PPI network by Degree values. To test Tribuloside's therapeutic efficacy in ALI, an acute lung damage model in mice was constructed using lipopolysaccharide. Tribuloside treatment reduced inflammatory cell infiltration, decreased fibrotic area, repaired damaged alveoli, and suppressed inflammatory factors IL-6, TNF-α, and IL-1ß in the lungs through many pathways and targets. Conclusion: This study reveals that Tribuloside has the potential to treat ALI by targeting various pathways and targets, according to network pharmacology predictions and experimental confirmation.

2.
J Org Chem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728220

RESUMO

An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.

3.
Int J Pharm X ; 7: 100250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711828

RESUMO

The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into ß-CD-MOF, γ-CD-MOF, ß-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-ß-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-ß-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-ß-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity in vitro. Luteolin-ß-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen in vivo, respectively. As determined by biochemical analysis, luteolin-ß-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.

4.
MedComm (2020) ; 5(5): e555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706741

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38725138

RESUMO

OBJECTIVE: Previous resting-state functional magnetic resonance imaging studies on intracerebral hemorrhage patients have focused more on the static characteristics of brain activity, while the time-varying effects during scanning have received less attention. Therefore, the current study aimed to explore the dynamic functional network connectivity changes of intracerebral hemorrhage patients. METHODS: Using independent component analysis, the sliding window approach, and the k-means clustering analysis method, different dynamic functional network connectivity states were detected from resting-state functional magnetic resonance imaging data of 37 intracerebral hemorrhage patients and 44 healthy controls. The inter-group differences in dynamic functional network connectivity patterns and temporal properties were investigated, followed by correlation analyses between clinical scales and abnormal functional indexes. RESULTS: Ten resting-state networks were identified, and the dynamic functional network connectivity matrices were clustered into four different states. The transition numbers were decreased in the intracerebral hemorrhage patients compared with healthy controls, which was associated with trail making test scores in patients. The cerebellar network and executive control network connectivity in State 1 was reduced in patients, and this abnormal dynamic functional connectivity was positively correlated with the animal fluency test scores of patients. INTERPRETATION: The current study demonstrated the characteristics of dynamic functional network connectivity in intracerebral hemorrhage patients and revealed that abnormal temporal properties and functional connectivity may be related to the performance of different cognitive domains after ictus. These results may provide new insights into exploring the neurocognitive mechanisms of intracerebral hemorrhage.

6.
Int Immunopharmacol ; 134: 112256, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744172

RESUMO

The incidence of allergic reactions has risen steadily in recent years, prompting growing interest in the identification of efficacious and safe natural compounds that can prevent or treat allergic diseases. Phellodendron amurense Rupr. has long been applied as a treatment for allergic diseases, whose primary component is phellodendrine. However, the efficacy of phellodendrine as a treatment for allergic diseases remains to be assessed. Mast cells are the primary effectors of allergic reactions, which are not only activated by IgE-dependent pathway, but also by IgE-independent pathways via human MRGPRX2, rat counterpart MRGPRB3. As such, this study explored the effect and mechanism of phellodendrine through this family receptors in treating allergic diseases in vitro and in vivo. These analyses revealed that phellodendrine administration was sufficient to protect against C48/80-induced foot swelling and Evans blue exudation in mice, and suppressed C48/80-induced RBL-2H3 rat basophilic leukemia cells degranulation, and ß-HEX, HIS, IL-4, and TNF-α release. Moreover, phellodendrine could reduce the mRNA expression of MRGPRB3 and responsiveness of MRGPRX2 by altering its structure. It was able to decrease Ca2+ levels, phosphorylation levels of CaMK, PLCß1, PKC, ERK, JNK, p38, and p65, and inhibit the degradation of IκB-α. These analyses indicate that berberine inhibits the activation of PLC and downregulates the release of Ca2+ in the endoplasmic reticulum by altering the conformation of MRGPRB3/MRGPRX2 protein, thereby inhibiting the activation of PKC and subsequently inhibiting downstream MAPK and NF-κB signaling, ultimately suppressing allergic reactions. There may thus be further value in studies focused on developing phellodendrine as a novel anti-allergic drug.

7.
Biol Res ; 57(1): 24, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711133

RESUMO

Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Galinhas , Gema de Ovo , Imunoglobulinas , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Galinhas/imunologia , Cricetinae , Imunoglobulinas/imunologia , Gema de Ovo/imunologia , Anticorpos Antivirais/imunologia , Feminino , Mesocricetus , Vacinas contra COVID-19/imunologia
8.
Int J Clin Exp Pathol ; 17(4): 137-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716353

RESUMO

OBJECTIVES: Tumor metastasis is a primary cause of recurrence and mortality in endometrial cancer. miR-34b-5p is abnormally expressed in various cancers and participates in tumor cell progression and metastasis. The objective of this study was to elucidate the biological functions and molecular mechanisms of miR-34b-5p in regulating the epithelial-mesenchymal transition (EMT) and metastasis in AN3CA endometrial cancer cells. METHODS: The expression levels of miR-34b-5p and zinc finger E-box-binding homeobox 1 (ZEB1) in endometrial cancer cells were analyzed by qRT-PCR, and ZEB1 expression in endometrial cancer tissues was examined by immunohistochemistry. Proliferation, migration, and invasion of endometrial cancer AN3CA cells were evaluated using CCK8, scratch, and transwell assays, respectively. Bioinformatic analysis and dual-luciferase reporter gene assays were used to validate the targeting relationship between miR-34b-5p and ZEB1. Western blotting was performed to analyze the expression levels of ZEB1 and EMT-related proteins. RESULTS: miR-34b-5p was significantly downregulated in endometrial cancer AN3CA cells. Overexpression of miR-34b-5p significantly inhibited proliferation, invasion, migration, and the EMT of endometrial cancer AN3CA cells. ZEB1, which was identified as a direct target gene of miR-34b-5p, exhibited high expression in endometrial cancer cells and tissues. Additionally, ZEB1 upregulation partially reversed the inhibitory effects of miR-34b-5p on proliferation, migration, invasion, and the EMT of endometrial cancer AN3CA cells. CONCLUSIONS: miR-34b-5p suppresses the EMT and metastasis in endometrial cancer AN3CA cells by targeting ZEB1, indicating that the miR-34b-5p-ZEB1-EMT axis may be a therapeutic target for endometrial cancer.

9.
Anticancer Drugs ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38718190

RESUMO

Anlotinib is an antiangiogenic drug that shows good efficacy and safety in patients with advanced non-small-cell lung cancer (NSCLC). This study aimed to explore the efficacy and safety of anlotinib for consolidation therapy in patients with stage III locally advanced, unresectable NSCLC after concurrent chemoradiotherapy (cCRT). This was a randomized, parallel-controlled, open-label, multicenter, phase II trial of patients with unresectable/nonoperated NSCLC treated with cCRT. The participants were randomized 2:1 to the anlotinib or control group. The primary endpoint was progression-free survival (PFS). The secondary endpoints were the disease control rate (DCR) and overall survival. This study was terminated early due to poor recruitment. Nine and two participants were randomly assigned to the anlotinib and control groups, respectively. One participant in the control group was excluded due to taking prohibited medications before the first efficacy evaluation. In the anlotinib group, the median age was 63 (range, 37-74) years. Two participants achieved partial response, six stable disease, and one progressive disease as best response. The DCR was 88.9%. The median PFS was 11.5 months, and the 12-month PFS rate was 33.9%. All related adverse events were grade 1 or 2. Two participants had a dose adjustment during the study. The evaluable data suggest that anlotinib alone was effective and tolerable in consolidation therapy after cCRT in patients with stage III unresectable NSCLC. The results need to be confirmed by a large-sample trial. This clinical trial was registered on www.clinicaltrials.gov (NCT03743129). Registration date: 6 September 2018.

10.
Small ; : e2401650, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712474

RESUMO

Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38709402

RESUMO

OBJECTIVE: This study aimed to study the correlation between preeclampsia (PE) and lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), and to examine the molecular mechanisms behind the development of PE. METHODS: 30 PE and 30 normal pregnant women placental samples were assessed the levels of NEAT1 and miR-217 by quantitative real-time PCR (qRT-PCR). The trophoblast cell line HTR8/SVneo was used for silencing NEAT1 or miR-217 inhibitor in the absence or presence of an inhibitor and H2O2. Cell counting Kit 8 (CCK-8), flow cytometry, and Transwell were used to detect cell proliferation, apoptosis, migration, and invasion. Luciferase reporter gene assay was utilized to verify the binding between miR-217 and Wnt family member 3 (Wnt3), and between the miR-217 and NEAT1. Proteins related to the Wnt/ß-catenin signaling pathway were detected using western blotting. RESULTS: The PE group exhibited a significantly downregulated expression of miR-217 and a significantly upregulated expression of NEAT1. NEAT1 targeted miR-217, and Wnt is a miR-217 target gene. siRNA-NEAT1 inhibited the apoptosis of trophoblast cells, but promoted their invasion, migration, and proliferation. MiR-217 inhibitor could partially reverse the effects of siRNA-NEAT1. The expression of the Wnt/ß-catenin signaling pathway-related proteins, WNT signaling pathway inhibitor 1 (DKK1), cyclin-D1 and ß-catenin, was significantly increased after siRNA-NEAT1. CONCLUSIONS: NEAT1 could reduce trophoblast cell invasion and migration by suppressing miR-217/Wnt signaling pathway, leading to PE.

12.
iScience ; 27(5): 109744, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711442

RESUMO

Ovarian cancer (OC) is the highest worldwide cancer mortality cause among gynecologic tumors, but its underlying molecular mechanism remains largely unknown. Here, we report that the RNA binding protein A-kinase anchoring protein 8 (AKAP8) is highly expressed in ovarian cancer and predicts poor prognosis for ovarian cancer patients. AKAP8 promotes ovarian cancer progression through regulating cell proliferation and metastasis. Mechanically, AKAP8 is enriched at chromatin and regulates the transcription of the specific hnRNPUL1 isoform. Moreover, AKAP8 phase separation modulates the hnRNPUL1 short isoform transcription. Ectopic expression of the hnRNPUL1 short isoform could partially rescue the growth inhibition effect of AKAP8-knockdown in ovarian cancer cells. In addition, AKAP8 modulates PARP1 expression through hnRNPUL1, and AKAP8 inhibition enhances PAPR inhibitor cytotoxicity in ovarian cancer. Together, our study uncovers the crucial function of AKAP8 condensation-mediated transcription regulation, and targeting AKAP8 could be potential for improvement of ovarian cancer therapy.

13.
Front Oncol ; 14: 1386772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737903

RESUMO

Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.

14.
Bioconjug Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738511

RESUMO

Radiation therapy is one of the most common treatments for cancer. However, enhancing tumors' radiation sensitivity and overcoming tolerance remain a challenge. Previous studies have shown that the Ras signaling pathway directly influences tumor radiation sensitivity. Herein, we designed a series of Ras-targeting stabilized peptides, with satisfactory binding affinity (KD = 0.13 µM with HRas) and good cellular uptake. Peptide H5 inhibited downstream phosphorylation of ERK and increased radio-sensitivity in HeLa cells, resulting in significantly reduced clonogenic survival. The stabilized peptides, designed with an N-terminal nucleation strategy, acted as potential radio-sensitizers and broadened the applications of this kind of molecule. This is the first report of using stabilized peptides as radio-sensitizers, broadening the applications of this kind of molecule.

15.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696217

RESUMO

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Assuntos
Nanopartículas , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Nanopartículas/química , Suínos , Camundongos , Vacinas Virais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Camundongos Endogâmicos BALB C , Antígenos Virais/imunologia , Antígenos Virais/química , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Domínios Proteicos/imunologia , Feminino , Nanovacinas
16.
Front Pharmacol ; 15: 1367806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628640

RESUMO

Background: Cinnamaldehyde (CMD) is a major functional component of Cinnamomum verum and has shown treatment effects against diverse bone diseases. This study aimed to assess the anti-diabetic osteoporosis (DOP) potential of diabetes mellitus (DM) and to explore the underlying mechanism driving the activity of CMD. Methods: A DOP model was induced via an intraperitoneal injection of streptozocin (STZ) into Sprague-Dawley rats, and then two different doses of CMD were administered to the rats. The effects of CMD on the strength, remodeling activity, and histological structure of the bones were assessed. Changes in the netrin-1 related pathways also were detected to elucidate the mechanism of the anti-DOP activity by CMD. Results: CMD had no significant effect on the body weight or blood glucose level of the model rats. However, the data showed that CMD improved the bone strength and bone remodeling activity as well as attenuating the bone structure destruction in the DOP rats in a dose-dependent manner. The expression of netrin-1, DCC, UNC5B, RANKL, and OPG was suppressed, while the expression of TGF-ß1, cathepsin K, TRAP, and RANK was induced by the STZ injection. CMD administration restored the expression of all of these indicators at both the mRNA and protein levels, indicating that the osteoclast activity was inhibited by CMD. Conclusion: The current study demonstrated that CMD effectively attenuated bone impairments associated with DM in a STZ-induced DOP rat model, and the anti-DOP effects of CMD were associated with the modulation of netrin-1/DCC/UNC5B signal transduction.

17.
Immunity ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640930

RESUMO

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.

18.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621872

RESUMO

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Assuntos
Melhoramento Vegetal , Espectrometria de Massas em Tandem , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Biomarcadores/metabolismo
19.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605605

RESUMO

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Assuntos
Envelhecimento , Disfunção Cognitiva , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Disfunção Cognitiva/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos , Humanos , Envelhecimento/fisiologia , Masculino , Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptor trkB/metabolismo , Leucócitos Mononucleares/metabolismo , Idoso , Feminino , Camundongos Endogâmicos C57BL
20.
Bioresour Bioprocess ; 11(1): 22, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38647993

RESUMO

Amyloid fibrils derived from different proteins have been proved as a promising material for adsorption of various pollutants from wastewater, which showed advantages of low cost and eco-friendliness. However, most of the amyloid fibrils derived from animal-based proteins with high environmental footprint, while more sustainable amyloid fibrils derived from plant materials are desirable. In this study, a plant-derived amyloid fibril was extracted from the commonly used wheat flour with a simple and scalable protein purification and fibrillization process. Interestingly, the amyloid fibrils showed good adsorption capacity towards typical organic dyes (Eosin Y (EY) and Congo red (CR)) from contaminated water. Adsorption kinetic analysis indicated the adsorption process to EY or CR by wheat flour amyloid well fitted with a pseudo-second-order model. The adsorption also followed a Langmuir isothermal model with adsorption capacities of 333 mg/g and 138 mg/g towards CR and EY, respectively. This work demonstrated the feasibility to utilize the plant-based amyloid fibril for organic dyes removal from contaminated water, which provided an affordable, sustainable and scalable tool for organic dyes removal from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA