Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268673

RESUMO

Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.


Assuntos
Interações Hidrofóbicas e Hidrofílicas
2.
iScience ; 24(1): 101853, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33364575

RESUMO

Combinations of ionic liquids (ILs) with antimicrobial compounds have been shown to produce synergistic activities in model liposomes. In this study, imidazolium chloride-based ILs with alkyl tail length variations are combined with commercially available, small-molecule antimicrobials to examine the potential for combinatorial and synergistic antimicrobial effects on P. aeruginosa, E. coli, S. aureus, and S. cerevisiae. The effects of these treatments in a human cell culture model indicate the cytotoxic limits of ILs paired with antimicrobials. The analysis of these ILs demonstrates that the length of the alkyl chain on the IL molecule is proportional to both antimicrobial activity and cytotoxicity. Moreover, the ILs which exhibit synergy with small-molecule antibiotics appear to be acting in a membrane permeabilizing manner. Collectively, results from these experiments demonstrate an increase in antimicrobial efficacy with specific IL + antimicrobial combinations on microbial cultures while maintaining low cytotoxicity in a mammalian cell culture model.

3.
Biomolecules ; 9(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242711

RESUMO

Alkyl-imidazolium chloride ionic liquids (ILs) have been broadly studied for biochemical and biomedical technologies. They can permeabilize lipid bilayer membranes and have cytotoxic effects, which makes them targets for drug delivery biomaterials. We assessed the lipid-membrane permeabilities of ILs with increasing alkyl chain lengths from ethyl to octyl groups on large unilamellar vesicles using a trapped-fluorophore fluorescence lifetime-based leakage experiment. Only the most hydrophobic IL, with the octyl chain, permeabilizes vesicles, and the concentration required for permeabilization corresponds to its critical micelle concentration. To correlate the model vesicle studies with biological cells, we quantified the IL permeabilities and cytotoxicities on different cell lines including bacterial, yeast, and ovine blood cells. The IL permeabilities on vesicles strongly correlate with permeabilities and minimum inhibitory concentrations on biological cells. Despite exhibiting a broad range of lipid compositions, the ILs appear to have similar effects on the vesicles and cell membranes.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Imidazóis/farmacologia , Imidazóis/toxicidade , Líquidos Iônicos/farmacologia , Líquidos Iônicos/toxicidade , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Permeabilidade da Membrana Celular , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/metabolismo , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA