Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 268: 127292, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608535

RESUMO

Acute sleep deprivation (ASD) is often observed in shift workers and characterized by drowsiness and unrelenting exhaustion. The physiological and psychological effects of ASD include anxiety, depression, cognitive impairment, systemic inflammation, stress responses, and disruptions of gut microbiota. However, the mechanisms involved in the ASD-associated circadian dysregulations with regard to gut dysbiosis, systemic inflammation, physiological modulation, and psychiatry disorders remain unclear. The aim of this study was to investigate whether central nervous system disorders induced by ASD are related to inflammation, barrier dysfunction, and circadian dysregulation. We also assessed impacts on microbiota succession. Male C57BL/6 mice were randomly allocated to the control and sleep deprivation (SD) groups. Mice in the SD group were subjected to 72 h of paradoxical SD using the modified multiple-platform method for ASD induction (72 h rapid eye movement-SD). The effects of ASD on dietary consumption, behaviors, cytokines, microbiota, and functional genes were determined. The appetite of the SD group was significantly higher than that of the control group, but the body weight was significantly lower than that of the control group. The anxiety-like behaviors were found in the SD group. Alpha and beta diversity of microbiota showed significant decrease after ASD induction; the relative abundance of Candidatus_Arthromitus and Enterobacter was increased, whereas that abundance of Lactobacillus, Muribaculum, Monoglobus, Parasutterella, and others was decreased in the SD group. These effects were accompanied by reduction in fecal propionic acid. In the proximal colon, the SD group exhibited significantly higher inflammation (tumor necrosis factor-α [TNF-α]) and dysregulation of the circadian rhythms (brain and muscle ARNT-like 1 [BMAL1] and cryptochrome circadian regulator 1 [CRY1]) and tight junction genes (occludin [OCLN]) than the control group. Gut barrier dysfunction slightly increased the plasma concentration of lipopolysaccharide and significantly elevated TNF-α. Inflammatory signals might be transduced through the brain via TNF receptor superfamily member 1 A (TNFRSF1A), which significantly increased the levels of microglia activation marker (ionized calcium-binding adapter molecule 1 [IBA1]) and chemokine (intercellular adhesion molecule 1 [ICAM1]) in the cerebral cortex. The serotonin receptor (5-hydroxytryptamine 1A receptor [5-HT1AR]) was significantly downregulated in the hippocampus. In summary, 72 h of rapid eye movement-SD induced physiological and psychological stress, which led to disruption of the circadian rhythms and gut microbiota dysbiosis; these effects were related to decrement of short chain fatty acids, gut inflammation, and hyperpermeability. The microbiota may be utilized as preventive and therapeutic strategies for ASD from the perspectives of medicine and nutrition.


Assuntos
Microbioma Gastrointestinal , Psiquiatria , Animais , Masculino , Camundongos , Ritmo Circadiano , Disbiose , Inflamação , Camundongos Endogâmicos C57BL , Privação do Sono , Fator de Necrose Tumoral alfa
2.
Life Sci ; 235: 116835, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493480

RESUMO

Sleep is crucial to improve athlete performance and their circadian rhythm, but sleep patterns may be disturbed because athletes participate in several competitions. In addition, intensive training programs can cause muscle pain and psychological stress in athletes, resulting in a lack of sleep. Sleep also plays a critical role in the recovery of muscle injury induced by exercise. The current study evaluated the effect of sleep deprivation on the recovery of muscle injury induced by high-intensity exercise in a mouse model. In this study, 28 mice were randomly assigned to four groups (N = 7): control (Control), exercise (EX), sleep deprivation (SD), and sleep deprivation with exercise (EX+SD). The mice from the EX and EX+SD groups were subjected to high-intensity swimming. The results showed that 72-h sleep deprivation increased food intake and reduced body weight. However, the manipulation of 8-week exercise and/or 72-h sleep deprivation did not have any effect in the elevated plus maze task and tail suspension test. Interestingly, the EX+SD group exhibited improved memory performance in the Morris water maze and impaired motor activity in the open field test. According to the TNF-α level and aspartate aminotransferase (AST), and creatine phosphokinase (CK) activities, only the EX+SD group exhibited muscle impairment. Overall, high-intensity exercise may cause muscle injury, and adequate sleep can recover muscle damage. However, sleep deprivation reduces protein synthesis, which decreases the ability to restore muscle damage and aggravates the harmful effect of high-intensity exercise.


Assuntos
Músculos/lesões , Músculos/fisiopatologia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Privação do Sono/fisiopatologia , Animais , Aspartato Aminotransferases/metabolismo , Creatina Quinase/metabolismo , Resposta de Imobilidade Tônica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Atividade Motora/fisiologia , Músculos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA