Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758249

RESUMO

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.

2.
Plant Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598852

RESUMO

Sweet potato (Ipomoea batatas [L.] Lam.) is a versatile crop, cultivated in the subtropical and tropical areas, as food, fodder, and industrial raw material crop. In China, sweet potato has been used as a health-care food in recent years, as it contains a wide range of nutrients and xenobiotic phytochemicals. However, viral diseases are major constraint for the sweet potato yield and quality, especially the seed production and quality. Over 30 species of viruses infect sweet potato worldwide (Clark et al. 2012). More recently, a few new viruses infected sweet potato were identified, such as sweet potato virus E (SPVE), which was reported in Korea(Jo et al. 2020). In May 2022, a sweet potato sample (JSXZ1) with virus-like symptom, such as mosaic and vein clearing were collected from sweet potato germplasm Xuzhou resource nursery, Jiangsu Province, China (N34˚16', E117˚18') (Fig. S1A). To investigate the virus disease, the sample JSXZ1 showing the typical symptoms of disease was prepared for Small-RNA (sRNA) deep-sequencing. The sRNA library was constructed using TruSeq™ Small RNA Sample Prep Kits (Illumina, San Diego, USA) and sequenced using the Illumine Hiseq 2500 platform by LC-Bop Technologies (Hangzhou) CO., LTD. The sample was sequenced to obtain 26, 358, 439 raw reads and 22, 969, 139 clean reads after quality control trimming and analysis. The Velvet 1.0.5 software was used to de novo assemble the clean reads (18 to 28 nt) into larger contigs, which were then compared with the nucleotide sequences in the National Center for Biotechnology Information (NCBI) database using the BLASTn algorithm. Viruses found in the sample were sweet potato latent virus (SPLV), sweet potato feathery mottle virus (SPFMV), sweet potato chlorotic stunt virus (SPCSV), sweet potato badnavirus A (SPBV-A) and sweet potato badnavirus B (SPBV-B). Surprisingly, besides the viruses listed above, 28 contigs matched sequences of SPVE isolate GS (MH388502). To verify the result, total RNA was extracted from the sample JSXZ1 and from other leave samples (JSXZ2-JSXZ5) that contained SPFMV, SPVC, SPLV, SPVG respectively stored in lab using FastPure Universal Plant Total RNA Isolation Kit (Vazyme Biotech Co., LTD, Nanjing, China). cDNA was synthesized using random primer (hexadeoxyribonucleotide mixture; pd(N)6). The cDNA serves as template in PCR using a newly designed primer pairs based on SPVE p1 gene (SPVE-F: 5'- TCACCAAAAAGAATGCTACAAC-3'/SPVE-R: 5'-GAAATCCTCCCACTCTCCATA-3'). An expected ~500-bp PCR fragment was obtained in JSXZ1, while none of the fragment was obtained from JSXZ2-JSXZ5 (Fig. S1B). The PCR fragment was cloned into pMD18-T vector (Takara Bio Inc., Beijing, China) and plasmid DNA from transformed Escherichia coli DH5α cell (n=3) were commercially sequenced by Sangon Biotech (Shanghai) Co., Ltd. The sequences of the three fragment clones we obtained were 100% identical when compared. A BLASTN analysis of the sequences revealed that they are specific to SPVE and shared 98.62% nucleotide identity to SPVE GS isolate (MH388502) and one sequence was submitted to GenBank (Accession number OQ948331). To determine the occurrence of SPVE in infected sweet potato plants, a total of 37 leaves samples with viral symptom collected from Shandong Province (n=6) and Jiangsu Province (n=31) were indexed by RT-PCR as described before. Only 9 (24.3%) out of 37 from Shandong (n=1) and Jiangsu (n=8) were positive to SPVE respectively. In addition, five additional viruses (SPFMV, SPVC, SPVG, SPLV, SPCSV) were detected among these 37 samples and always in a mixed infection of two or more viruses. To our knowledge, this is the first report of SPVE infecting sweet potato in China. Sweet potato is an important crop in China and other countries (Zhang et al. 2023). China is the largest sweet potato producer all over the world. In addition, as sweet potato is produced through the vegetative propagation mode, thus, more attention should be paid to detection and monitoring of occurrence of SPVE in China.

3.
Plant Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170442

RESUMO

In September 2022, leaf blight symptoms (Fig. 1) were detected on six-year-old kiwi trees (Actinidia chinensis cv. 'Hongyang') in Xuzhou municipality (117.29º E, 34.23º N), Jiangsu Province. Early-stage disease symptoms included light brown necrotic lesions of irregular shape ranging in length from 0.2 to 2.4 cm, which turned into leaf blight after approximately 2 weeks. Those symptoms were similar to those previously reported during a Pestalotiopsis sp. infection on kiwi trees in Turkey (Karakaya 2001). Approximately 20% of the leaves from 300 trees examined in one kiwi orchard, 3000 m2 in size, showed the disease symptoms. Ten leading edges of symptomatic leaves were sterilized with 2% sodium hypochlorite for 1 min, rinsed twice with sterile ddH2O and cultured at 26ºC for 3 days on PDA medium containing 50 µg/ml chloramphenicol. The fungal colonies were collected, and the single spore isolation method was used to obtain four isolates. The obtained isolates showed white aerial mycelia that turned greyish after 2 days of cultivation on PDA medium at 26ºC. ITS (OR054113, OR054153-OR054155), TUB2 (OR060951-OR060953, OR249978), and CMD (OR255947-OR255950) genes were amplified using the ITS1/ITS4, BT2a/BT2b and CMD5/CMD6 primers, respectively (Visagie et al. 2014a). The obtained ITS, TUB2, and CMD sequences shared 99.81%-100%, 96.72%-96.96%, and 90.17%-92.58% homology compared to the ex-type strain P. oxalicum CBS 219.30 (MH855125, KF296462, and KF296367), while the obtained ITS and TUB2 sequences showed 99.62%-99.81%, and 96.46%-96.72% identity compared to the representative strain P. oxalicum DTO 179B9 (KJ775647 and KJ775140) (Visagie et al. 2014b). The sequences obtained also showed high homology compared to P. oxalicum HP7-1 (ITS: 99.81%-100% homology; TUB2: 98.98%-99.38% homology; CMD: 94.71%-95.10% homology) (Li et al. 2022). A molecular phylogenetic tree was constructed using MEGA X with representative Penicillium strains retrieved from GenBank (Fig. 2). Microscope observations revealed the presence of curved septate hyphae. Conidia were colorless, unicellular, and ellipsoidal (5-8 µm in length; > 2000 observations), whereas conidiophores were mainly monoverticillate (approximately 20% of the conidiophores were biverticillate) (50-70 µm in length; 43 observations) and contained cylindrical phialides (13-15 µm in length). These findings are consistent with P. oxalicum morphology (Wu et al. 2022; Zheng et al. 2023). The pathogenicity of the four isolates was screened using healthy non-detached 'Hongyang' kiwi leaves. Fifteen leaves from five different two-month-old trees were used for each isolate, with three repetitions. For inoculation, a 10 mL solution containing 1 × 106 spores/mL was sprayed on the leaves. Sterilized water was used in the control experiment, which was carried out using fifteen leaves from five different two-month-old trees, with three repetitions. Inoculated trees were stored at 26ºC and 60% relative humidity for 2 days. All the infected leaves had necrotic lesions and leaf blight symptoms comparable to those found in the field, but the control leaves had no lesions. The pathogen was recovered, and its identity was confirmed by ITS sequencing and morphology analysis, fulfilling Koch's postulates. P. oxalicum is a common cause of blue mould in postharvest fruits (Tang et al. 2020). P. oxalicum has been recently reported as the causal agent of leaf spot in pineapple (Wu et al. 2022; Zheng et al. 2023), and leaf blight on maize (Han et al. 2023). Although Alternaria sp., Glomerella cingulate, Pestalotiopsis sp., Phomopsis sp., and Phoma sp. were previously isolated from kiwi leaves with blight symptoms (Kim et al. 2017), this is the first report of P. oxalicum causing leaf blight on kiwi trees worldwide. P. oxalicum is a well-known source of mycotoxins, such as secalonic acid (Otero et al. 2020), indicating that its presence in kiwifruit orchards may pose a significant risk to human health. The discovery of this hazardous pathogen in kiwi trees must drive the development of management strategies. Kiwifruit is an important dietary source of vitamins, fiber, folate, and potassium, and China is the major producer of kiwifruit, with more than 1.2 million metric tons harvested in 2021. This report will help to generate a better understanding of the pathogens affecting kiwifruit orchards in China.

4.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003642

RESUMO

Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.


Assuntos
Ascomicetos , Ipomoea batatas , Ascomicetos/fisiologia , Ipomoea batatas/genética , Ceratocystis , Sacarose/farmacologia
5.
Plant Dis ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578363

RESUMO

Black nightshade (Solanum nigrum) typically grows as a weed species, but it is also widely used as an herb to treat stomach ulcers and dermal infections in many countries (Jabamalairaj et al. 2019). In April 2023, extensive root galls similar to those associated with by root-knot nematodes (RKNs), Meloidogyne spp., were observed on the roots of black nightshade in several commercial fields in Lufeng county (22°55'57.44″N, 115°33'10.31″E), Guangdong Province, China. Upon inspection, there were one to several female RKN in each gall, and egg masses protruding through the root surface. The disease incidence rate was more than 90% in each field using the random sampling method. The nematode population densities in the samples ranged from 279 to 656 eggs and second-stage juveniles (J2s) per gram of fresh roots. Females and egg masses were collected from the roots, and egg masses were incubated in sterile water at 25°C to obtain J2s. Males were not collected in root galling or soil samples. The J2 tail is thin with a broad, bluntly pointed tip, and a clearly defined hyaline tail terminus. Measurements of J2 (n = 20) included: L= 440 ± 30.5 (384 to 500) µm, stylet = 12.3 ± 0.7 (11.3 to 13.7) µm, tail = 51.6 ± 2.4 (47.9 to 57.0) µm. For females (n = 15), vulval slit length = 25.5 ±1.9 (23.6 to 29.1) µm, vulval slit to anus distance = 22.1 ± 3.0 (18.2 to 27.0) µm. Stylet knobs in females are divided longitudinally by a groove so that each knob appears as two. The perineal patterns are round to ovoid, with coarse and smooth striae, moderate to high dorsal arch and mostly lacking distinct lateral lines. Morphological characteristics from J2s and perineal patterns from adult females fit the original description of M. enterolobii (Yang and Eisenback 1983). Furthermore, species identity was explored by sequencing the D2-D3 region of the 28S rRNA gene using primers D2A/D3B (Vrain et al. 1992), and the mtDNA cytochrome c oxidase I (COI) genes using primers JB3/JB5 (Derycke et al. 2005). The sequences for the target genes were 759 bp (GenBank Accession No. OR046056) and 447 bp (GenBank Accession No. OR042802), respectively. The BLAST analysis suggested 98.17~99.78% similarities to other available M. enterolobii sequences in GenBank. Species identity was further confirmed with the species-specific primer pair Me-F/Me-R (Long et al. 2006). An approximately 240 bp PCR product was produced, which was previously reported only for M. enterolobii, whereas no product was obtained from control populations of M. incognita or M. javanica. The pathogenicity test was conducted in a greenhouse at 28°C using seedlings of S. nigrum maintained in pots containing 500 cm3 sterilized soil. Ten replicates were inoculated with 800 eggs and J2s of the original population of M. enterolobii, while another 10 replicates of control plants were not inoculated. After 7 weeks, the inoculated plants exhibited galling symptoms similar to plants observed in the field, and females and egg masses were obtained by dissecting galls. No galling symptoms were observed on control plants. These results confirmed the nematode's pathogenicity. To our knowledge, this is the first record of M. enterolobii parasitizing black nightshade. M. enterolobii stands out as a highly deleterious variant among the species of RKNs owing to its extensive repertoire of host plants, pathogenicity, and proficiency in thriving and multiplying even on crops possessing resistance genes (Sikandar, 2022). In addition to being a medicinal plant, S. nigrum is a widespread weed found in fields throughout China. This report also showed that S. nigrum could play an important role as a reservoir host of M. enterolobii aiding its survival, reproduction, spread, and increasing the potential damage for host crops.

6.
Plant Physiol Biochem ; 201: 107809, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315350

RESUMO

ORANGE (OR) plays essential roles in regulating carotenoid homeostasis and enhancing the ability of plants to adapt to environmental stress. However, OR proteins have been functionally characterized in only a few plant species, and little is known about the role of potato OR (StOR). In this study, we characterized the StOR gene in potato (Solanum tuberosum L. cv. Atlantic). StOR is predominantly localized to the chloroplast, and its transcripts are tissue-specifically expressed and significantly induced in response to abiotic stress. Compared with wild type, overexpression of StOR increased ß-carotene levels up to 4.8-fold, whereas overexpression of StORHis with a conserved arginine to histidine substitution promoted ß-carotene accumulation up to 17.6-fold in Arabidopsis thaliana calli. Neither StOR nor StORHis overexpression dramatically affected the transcript levels of carotenoid biosynthetic genes. Furthermore, overexpression of either StOR or StORHis increased abiotic stress tolerance in Arabidopsis, which was associated with higher photosynthetic capacity and antioxidative activity. Taken together, these results indicate that StOR could be exploited as a potential new genetic tool for the improvement of crop nutritional quality and environmental stress tolerance.


Assuntos
Arabidopsis , Solanum tuberosum , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Carotenoides/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
7.
Genes (Basel) ; 14(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37239329

RESUMO

Sweetpotato (Ipomoea batatas) is an important root crop that is infected by Fusarium solani in both seedling and root stages, causing irregular black or brown disease spots and root rot and canker. This study aims to use RNA sequencing technology to investigate the dynamic changes in root transcriptome profiles between control check and roots at 6 h, 24 h, 3 days, and 5 days post-inoculation (hpi/dpi) with F. solani. The results showed that the defense reaction of sweetpotato could be divided into an early step (6 and 24 hpi) without symptoms and a late step to respond to F. solani infection (3 and 5 dpi). The differentially expressed genes (DEGs) in response to F. solani infection were enriched in the cellular component, biological process, and molecular function, with more DEGs in the biological process and molecular function than in the cellular component. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the main pathways were metabolic pathways, the biosynthesis of secondary metabolites, and carbon metabolism. More downregulated genes were identified than upregulated genes in the plant-pathogen interaction and transcription factors, which might be related to the degree of host resistance to F. solani. The findings of this study provide an important basis to further characterize the complex mechanisms of sweetpotato resistance against biotic stress and identify new candidate genes for increasing the resistance of sweetpotato.


Assuntos
Fusarium , Ipomoea batatas , Transcriptoma/genética , Ipomoea batatas/genética , Raízes de Plantas/genética , Fusarium/genética
8.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112985

RESUMO

Human adenovirus species C (HAdV-C) is frequently detected in China and worldwide. For the first time, 16 HAdV-C strains were isolated from sewage water (14 strains) and hospitalised children with diarrhoea (2 strains,) in Tianjin, China. Nearly complete genome data were successfully obtained for these viruses. Subsequently, genomic and bioinformatics analyses of the 16 HAdV-C strains were performed. A phylogenetic tree of the complete HAdV-C genome divided these strains into three types: HAdV-C1, HAdV-C2, HAdV-C5. Phylogenetic analysis based on the fiber gene showed similar outcomes to analyses of the hexon gene and complete HAdV-C genomes, whereas the penton gene sequences showed more variation than previously reported. Furthermore, analysis of the whole-genome sequencing revealed seven recombination patterns transmitted in Tianjin, of which at least four patterns have not been previously reported. However, the penton base gene sequences of the HAdV-C species had significantly lower heterogeneity than those of the hexon and fiber gene sequences of recombinant isolates; that is, many strains were distinct in origin, but shared hexon and fiber genes. These data illustrate the importance of frequent recombination in the complexity of the HAdV-C epidemic in Tianjin, thus emphasising the necessity for HAdV-C sewage and virological monitoring in China.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Criança , Humanos , Análise de Sequência de DNA , Filogenia , Esgotos , Genoma Viral , Recombinação Genética , Genômica , China/epidemiologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166686, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907288

RESUMO

Normothermic machine perfusion (NMP) could provide a curative treatment to reduce biliary injury in donation after cardiac death (DCD) donor livers; however, the underlying mechanisms remain poorly understood. In a rat model, our study compared air-oxygenated NMP to hyperoxygenated NMP and found that air-oxygenated NMP improved DCD functional recovery. Here, we found that the charged multivesicular body protein 2B (CHMP2B) expression was substantially elevated in the intrahepatic biliary duct endothelium of the cold-preserved rat DCD liver after air-oxygenated NMP or in biliary endothelial cells under hypoxia/physoxia. CHMP2B knockout (CHMP2B-/-) rat livers showed increased biliary injury after air-oxygenated NMP, indicated by decreased bile production and bilirubin level, elevated biliary levels of lactate dehydrogenase and gamma-glutamyl transferase. Mechanically, we demonstrated that CHMP2B was transcriptionally regulated by Kruppel-like transcription factor 6 (KLF6) and alleviated biliary injury through decreasing autophagy. Collectively, our results suggested that air-oxygenated NMP regulates CHMP2B expression through the KLF6, which reduces biliary injury by inhibiting autophagy. Targeting the KLF6-CHMP2B autophagy axis may provide a solution to reducing biliary injury in DCD livers undergoing NMP.


Assuntos
Células Endoteliais , Transplante de Fígado , Ratos , Animais , Corpos Multivesiculares , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Fígado , Perfusão/métodos , Morte
10.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836371

RESUMO

Root rot caused by Fusarium solani is one of the major postharvest diseases limiting sweet potato production. Here, antifungal activity and the action mode of perillaldehyde (PAE) against F. solani were investigated. A PAE concentration of 0.15 mL/L in air (mL/L air) markedly inhibited the mycelial growth, spore reproduction and spore viability of F. solani. A PAE vapor of 0.25 mL/L in air could control the F. solani development in sweet potatoes during storage for 9 days at 28 °C. Moreover, the results of a flow cytometer demonstrated that PAE drove an increase in cell membrane permeability, reduction of mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) in F. solani spores. Subsequently, a fluorescence microscopy assay demonstrated that PAE caused serious damage to the cell nuclei in F. solani by inducing chromatin condensation. Further, the spread plate method showed that the spore survival rate was negatively correlated with the level of ROS and nuclear damage, of which the results indicated that PAE-driven ROS accumulation plays a critical role in contributing to cell death in F. solani. In all, the results revealed a specific antifungal mechanism of PAE against F. solani, and suggest that PAE could be a useful fumigant for controlling the postharvest diseases of sweet potatoes.

11.
Food Chem ; 408: 135213, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527924

RESUMO

Root rot caused by Fusarium solani is one of major postharvest diseases limiting sweet potato production. Antifungal effect and possible mode of action of cinnamaldehyde (CA) against F. solani were investigated. CA concentration of 0.075 g/L inhibited conidial viability of F. solani. CA vapor of 0.3 g/L in air completely controlled the F. solani development in sweet potatoes during storage for 10 days at 28 °C, and protected soluble sugar and starch in the flesh from depletion by the fungus. Further results demonstrated that CA induced reduction in mitochondrial membrane potential (Δψm), ROS accumulation, and cell apoptosis characterized by DNA fragmentation in F. solani. Moreover, CA facilitated decomposition of mitochondria-specific cardiolipin (CL) into its catabolites by the catalytic action of phospholipases. Altogether, the results revealed a specific antifungal mechanism of CA against F. solani, and suggest that CA holds promise as a preservative for postharvest preservation of sweet potato.


Assuntos
Fusarium , Ipomoea batatas , Antifúngicos/farmacologia , Ipomoea batatas/microbiologia
12.
Exp Ther Med ; 24(5): 687, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36277154

RESUMO

Brain death (BD) results in injury to organs and induces lung donor dysfunction. Since the 20S proteasome abnormality is associated with a variety of diseases, the present study investigated whether it was involved in lung injury following BD in rats, and the effects of the proteasome inhibitor MG132 on lung injury was also assessed. Rats were assigned to a BD group or a control sham group. The BD group of rats were sacrificed at different time points after BD. Administration of MG132 was performed intraperitoneally 30 min before BD. Arterial blood was drawn to measure the oxygenation index [partial artery pressure of oxygen (PaO2)/fractional concentration of inspired oxygen (FiO2)]. The right lung was used for staining with hematoxylin and eosin, immunohistochemistry, immunofluorescence, western blotting and RT-qPCR analysis. The left lung was used to measure the wet and dry weights. Rat alveolar macrophages (NR8383) were treated with MG132 and hypoxia/reoxygenation (H/R) and used for western blotting and flow cytometry. The PaO2/FiO2 ratio decreased after BD; the wet/dry weight ratio, histological lung injury score and protein expression of 20S proteasome ß1 and inducible nitric oxide synthase (iNOS) gradually increased in rats after BD. Colocalization in the immunofluorescence between 20S proteasome ß1 and iNOS was observed. MG132 treatment increased the PaO2/FiO2 ratio and decreased the wet/dry weight ratio, histological lung injury score and protein expression of 20S proteasome ß1 and iNOS in rats after BD. MG132 was revealed to increase NR8383 apoptosis after H/R and to upregulate the protein expression levels of p-JNK and cleaved-caspase 3. Overall, the proteasome inhibitor MG132 could effectively reduce lung injury, which may be associated with its ability to inhibit the expression of the proteasome and promote the apoptosis of alveolar macrophages.

13.
Mol Cell Probes ; 65: 101846, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840109

RESUMO

The disease co-infected by Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) is devastating in sweet potato, as it would give rise to the serious losses in both production and quality. Consequently, it is conducive for preventing and controlling this disease to detect these two viruses accurately and timely. Here we developed and optimized a dual reverse transcription recombinase polymerase amplification (RT-RPA) for rapid and accurate detection of SPFMV and SPCSV. Four special primers were designed based on the conserved sequences of SPFMV and SPCSV, respectively. The sensitivity of dual RT-RPA for SPFMV and SPCSV was 10-4 ng/µL at the optimal conditions in which the primer ratio between SPFMV and SPCSV was 2:1, and the reaction incubated for 25 min at a temperature of 39 °C. Both 61 sweet potato samples and 5 morning glory samples collected from China were tested using the dual RT-RPA successfully. Therefore, the dual RT-RPA is a reliable, rapid, sensitive method to detect these two viruses in sweet potato. It is the RT-RPA that was used for detection of SPFMV and SPCSV simultaneously firstly. This dual RT-RPA, as a convenient and powerful tool, will be useful to diagnose SPFMV and SPCSV.


Assuntos
Ipomoea batatas , Potyvirus , China , Doenças das Plantas , Potyvirus/genética
14.
Front Pharmacol ; 13: 907433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662721

RESUMO

Background: Long noncoding RNAs (lncRNAs) are significantly implicated in tumor proliferation. Nevertheless, proliferation-derived lncRNAs and their latent clinical significance remain largely unrevealed in hepatocellular carcinoma (HCC). Methods: This research enrolled 658 HCC patients from five independent cohorts. We retrieved 50 Hallmark gene sets from the MSigDB portal. Consensus clustering was applied to identify heterogeneous proliferative subtypes, and the nearest template prediction (NTP) was utilized to validate the subtypes. We introduced an integrative framework (termed "ProLnc") to identify proliferation-derived lncRNAs. Moreover, a proliferation-related signature was developed and verified in four independent cohorts. Results: In 50 Hallmarks, seven proliferation pathways were significantly upregulated and correlated with a worse prognosis. Subsequently, we deciphered two heterogeneous proliferative subtypes in TCGA-LIHC. Subtype 2 displayed enhanced proliferative activities and a worse prognosis, whereas subtype 1 was associated with hyperproliferative HCC and a favorable prognosis. The NTP further verified the robustness and reproducibility of two subtypes in four cohorts derived from different platforms. Combining the differentially expressed lncRNAs from two subtypes with proliferative lncRNA modulators from our ProLnc pipeline, we determined 230 proliferation-associated lncRNAs. Based on the bootstrapping channel and the verification of multiple cohorts, we further identified ten lncRNAs that stably correlated with prognosis. Subsequently, we developed and validated a proliferative lncRNA signature (ProLncS) that could independently and accurately assess the overall survival (OS) and relapse-free survival (RFS) of HCC patients in the four cohorts. Patients with high ProLncS score displayed significantly genomic alterations (e.g., TP53 mutation, 8p23-8p24 copy number variation) and higher abundances of immune cells and immune checkpoint molecules, which suggested immunotherapy was more suitable for patients with high ProLncS score. Conclusion: Our work provided new insights into the heterogeneity of tumor proliferation, and ProLncS could be a prospective tool for tailoring the clinical decision and management of HCC.

15.
Sci Rep ; 12(1): 7446, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523980

RESUMO

The optimal oxygen concentration is unclear for normothermic machine perfusion (NMP) of livers from donation after circulatory death (DCD). Our purposes were to investigate the effect of air-ventilated NMP on the DCD liver, analyze the underlying mechanism and select the targets to predict liver functional recovery with NMP. NMP was performed using the NMP system with either air ventilation or oxygen ventilation for 2 h in the rat liver following warm ischemia and cold-storage preservation. Proteomics and metabolomics were used to reveal the significant molecular networks. The bioinformation analysis was validated by administering peroxisome proliferator activator receptor-γ (PPARγ) antagonist and agonist via perfusion circuit in the air-ventilated NMP. Results showed that air-ventilated NMP conferred a better functional recovery and a less inflammatory response in the rat DCD liver; integrated proteomics and metabolomics analysis indicated that intrahepatic docosapentaenoic acid downregulation and upregulation of cytochrome P450 2E1 (CYP2E1) expression and activity were associated with DCD liver functional recovery with air-ventilated NMP; PPARγ antagonist worsened liver function under air-oxygenated NMP whereas PPARγ agonist played the opposite role. In conclusion, air-ventilated NMP confers a better liver function from DCD rats through the DAP-PPARγ-CYP2E1 axis; CYP2E1 activity provides a biomarker of liver functional recovery from DCD.


Assuntos
Citocromo P-450 CYP2E1 , Transplante de Fígado , Perfusão , Animais , Fígado , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Oxigênio , PPAR gama , Perfusão/métodos , Ratos
16.
Bioengineered ; 13(2): 4455-4467, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35152855

RESUMO

Clear cell renal cell carcinoma, the most common type of renal cancer, is associated with poor survival. Ubiquitin-specific peptidase 2 regulates the molecular mechanisms of cancer cells. However, its mechanism in clear cell renal cell carcinoma remains unclear. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry were performed to assess ubiquitin-specific peptidase 2 expression in human clear cell renal cell carcinoma samples. Ubiquitin-specific peptidase 2 was weakly expressed in clear cell renal cell carcinoma samples and associated with poor patient outcomes. Ubiquitin-specific peptidase 2 inhibition promoted clear cell renal cell carcinoma cell proliferation, migration, and invasion. Ubiquitin-specific peptidase 2 overexpression inhibited clear cell renal cell carcinoma cell proliferation, migration, and invasion in vitro and in vivo. RNA-sequencing showed significant changes in the epithelial-mesenchymal transition-related pathways following ubiquitin-specific peptidase 2 knockdown. Western blotting was performed to detect the protein expression levels. Expression of p-nuclear factor-κB p65, N-cadherin, Vimentin, and Snail, which were markedly increased, as well as E-cadherin, which was decreased following ubiquitin-specific peptidase 2 knockdown. Rescue experiments using the nuclear factor-κB inhibitor BAY 11-7082 revealed that the migration and invasion abilities and the expression of epithelial-mesenchymal transition pathway proteins were inhibited in both the short hairpin RNA (shRNA) for ubiquitin-specific peptidase 2 and shRNA for negative control groups. Ubiquitin-specific peptidase 2 is a potential biomarker to distinguish clear cell renal cell carcinoma patients from healthy individuals. Ubiquitin-specific peptidase 2-mediated inhibition of epithelial-mesenchymal transition in clear cell renal cell carcinoma cells is dependent on the nuclear factor-κB pathway.


Assuntos
Carcinoma de Células Renais , Transição Epitelial-Mesenquimal/genética , Neoplasias Renais , NF-kappa B/genética , Proteases Específicas de Ubiquitina/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais/genética
17.
Front Surg ; 8: 760989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901142

RESUMO

Brain death (BD) induces an organ-level inflammatory response. However, the underlying mechanisms have not been fully elucidated. Here, we investigated the role of caspase-1-mediated pyroptosis in BD-induced kidney injury in rats. A BD model was established in Sprague-Dawley rats. The rats were intravenously injected with Z-YVAD-FMK 1 h before BD, and sham-operated rats served as controls. After 0, 1, 2, 4, and 6 h of BD, renal injury, and renal expression of the nod-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, caspase-11, gasdermin D (GSDMD), IL-1ß, and IL-18 were assessed using quantitative reverse transcriptase-polymerase chain reaction, western blotting, and immunohistochemistry. Blood urea nitrogen and serum creatinine levels were measured. Additionally, renal tubular epithelial cells (NRK-52E) were subjected to 3 h of hypoxia followed by 6 h of reoxygenation and incubated with Z-YVAD-FMK before hypoxia and reoxygenation. Caspase-11 was knocked-down using small interfering RNA technology. Cell viability and levels of pyroptosis-associated proteins were assessed thereafter. NLRP3, caspase-1, GSDMD, IL-1ß, and IL-18 expression levels were upregulated in BD rats. Treatment with Z-YVAD-FMK reduced mRNA and protein levels of caspase-1, GSDMD, IL-1ß, and IL-18, improved renal function, and alleviated renal injury. Z-YVAD-FMK efficaciously reduced pyroptosis effects in kidneys in BD rats. Thus, it could be considered as a therapeutic target for BD-induced kidney injury.

18.
Pest Manag Sci ; 77(10): 4564-4571, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34086397

RESUMO

BACKGROUND: Ceratocystis fimbriata is a hazardous fungal pathogen able to cause black rot disease on sweet potato. The management of C. fimbriata strongly relies on the use of toxic fungicides, and there is a lack of efficient alternative strategies. RESULTS: The antifungal properties of quinolinic acid (QA) were studied for the first time, indicating that QA shows selective antifungal activity against C. fimbriata. QA inhibited completely the mycelial growth of C. fimbriata at less than 0.8 mg mL-1 concentration (pH 4), and was able to produce alterations in the fungal cell wall, and to impede spore agglutination and mycelium formation. QA significantly reduced the concentration of ergosterol, and was able to associate to iron (II), suggesting that QA may be a lanosterol 14-α demethylase inhibitor. In preventive applications, QA reduced the disease incidence of C. fimbriata on sweet potato by 75%, achieving higher control efficacy in comparison with commercial fungicides prochloraz and carbendazim. CONCLUSIONS: The first selective antifungal agent against C. fimbriata was discovered in this work, and showed suitable antifungal properties for the management of black rot disease. © 2021 Society of Chemical Industry.


Assuntos
Ascomicetos , Ipomoea batatas , Ceratocystis , Doenças das Plantas , Ácido Quinolínico
19.
Biochem Biophys Res Commun ; 552: 150-156, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744763

RESUMO

Hepatocyte apoptosis is a crucial factor affecting liver quality in brain-dead donors. The identification of key molecular proteins involved in brain-death (BD)-induced hepatocyte apoptosis may help determine an effective method for improving the quality of livers from brain-dead donors. In this study, we used in vivo and in vitro models to investigate the role of chitinase-3-like protein 1 (CHI3L1) in promoting liver cell apoptosis after BD. Chitin was used to inhibit CHI3L1 in a rat model of BD. Macrophage polarization of THP-1 cells and hypoxia/reoxygenation (H/R) of LO-2 cells were used to mimic BD-induced cell stress in liver. We found that CHI3L1 played a vital role in promoting liver cell apoptosis. Six hours after BD, CHI3L1 expression was significantly upregulated in liver macrophages and was associated with BD-induced M1 polarization of these cells. In liver cells cultured under H/R conditions, recombinant CHI3L1 activated the protease-activated receptor 2 (PAR2)/c-June N-terminal kinase (JNK) apoptotic pathway and aggravated apoptosis. Compared with the control group, chitin particles inhibited the expression of CHI3L1 in the liver of brain dead rats, thereby reducing activation of the hepatocyte surface receptor, PAR2, and its downstream JNK/caspase-3 signaling pathway, ultimately reducing hepatocyte apoptosis. In conclusion, our results indicate that CHI3L1 relies on a PAR2/JNK-mediated mechanism to promote BD-induced hepatocyte apoptosis.


Assuntos
Apoptose/genética , Morte Encefálica/fisiopatologia , Caspase 3/genética , Proteína 1 Semelhante à Quitinase-3/genética , Hepatócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Receptor PAR-2/genética , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Quitina/farmacologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Interferência de RNA , Ratos Sprague-Dawley , Receptor PAR-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células THP-1
20.
Sci Rep ; 11(1): 3857, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594198

RESUMO

Accurate evaluation of liver steatosis is required from brain-dead donors (BDDs) with nonalcoholic fatty liver disease (NAFLD). Our purposes were to investigate expression and regulation of connective tissue growth factor (CTGF) expression in livers from human and rat after brain death, and further evaluate its potential application. NAFLD and brain death models were established in rats. LX2 cells were cultured under hypoxia/reoxygenation. CTGF protein and mRNA levels were measured in liver samples from BDDs of human and rat by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. YAP-regulated CTGF expression was investigated in LX2 cells via YAP small interfering RNA and Verteporfin treatment. Blood CTGF level from BDDs was measured by enzyme-linked immunosorbent assay. After brain death, CTGF, transforming growth factor-ß and YAP were overexpressed in non-alcoholic steatotic liver, whereas CTGF was downregulated in non-steatotic liver. Time-series analysis revealed that CTGF and YAP expression was comparable, as confirmed by inhibited YAP expression in LX2 cells. CTGF level and NAFLD activity were linearly correlated. CTGF expression and regulation differ between non-steatosis and nonalcoholic steatosis livers from BDDs. CTGF may be an important factor to evaluate graft quality from BDDs with NAFLD.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Biomarcadores/metabolismo , Morte Encefálica , Humanos , Masculino , Ratos Endogâmicos Lew , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA