Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 109, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769556

RESUMO

Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.


Assuntos
Neoplasias da Mama , Histona Desmetilases , Terapia de Alvo Molecular , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Biomarcadores Tumorais
2.
Biomolecules ; 14(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785979

RESUMO

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Ubiquitinação , Inflamação/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
3.
Bioorg Chem ; 147: 107400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688196

RESUMO

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
4.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

5.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
6.
Life Sci ; 336: 122310, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013140

RESUMO

AIMS: Qipian® is a commercialized agent composed of extracts of three genera of commensal bacteria, and its mechanism of action on asthma is unclear. This study aimed to examine the impact of Qipian® on airway inflammation and investigate the underlying mechanisms. MATERIALS AND METHODS: Qipian® or dexamethasone (DEX) was administered before OVA challenge in an ovalbumin-induced asthma mouse model, and then asthmatic symptoms were observed and scored. Samples of lung tissues, blood, and bronchoalveolar lavage fluid (BALF) were collected, and eosinophils (Eos), immunoglobins (Igs), and type 1 T helper (Th1)/Th2 cell cytokines were measured. Mucus production in the lung was assessed by periodic acid-Schiff (PAS) staining. The effects of Qipian® on dendritic and T regulatory (Treg) cells were investigated using flow cytometry. KEY FINDINGS: The short-term administration of Qipian® significantly inhibited the cardinal features of allergic asthma, including an elevated asthmatic behaviour score, airway inflammation and immune response. Histological analysis of the lungs showed that Qipian® attenuated airway inflammatory cell infiltration and mucus hyperproduction. Qipian® restored Th1/Th2 imbalance by decreasing interleukin (IL)-4, IL-5, and IL-13 while increasing interferon (IFN)-γ and IL-10. Further investigation revealed that Qipian® treatment induced the upregulation of CD4+CD25+Foxp3+ Treg cells and CD103+ DCs and downregulation of tachykinins neurokinin A (NKA) and NKB in the lung. SIGNIFICANCE: Our findings suggested that short-term treatment with Qipian® could alleviate inflammation in allergic asthma through restoring the Th1/Th2 balance by recruiting Treg cells to airways and inducing the proliferation of CD103+ DCs, which actually provides a new treatment option for asthma.


Assuntos
Asma , Lisados Bacterianos , Animais , Camundongos , Ovalbumina , Asma/metabolismo , Pulmão/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Citocinas , Líquido da Lavagem Broncoalveolar , Imunidade , Bactérias , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
8.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
9.
Biochem Pharmacol ; 216: 115799, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696455

RESUMO

Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.

12.
Med Res Rev ; 43(5): 1438-1469, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37012609

RESUMO

Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/química , Lisina/química , Lisina/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Front Immunol ; 14: 1158083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969200

RESUMO

Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.


Assuntos
Fatores Quimiotáticos , Fígado , Animais , Antígenos CD8 , Leucócitos , Receptores de Superfície Celular , Transdução de Sinais , Humanos
14.
Bioorg Chem ; 133: 106409, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753963

RESUMO

Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.


Assuntos
Histona Desmetilases , Neoplasias , Humanos , Carcinogênese/metabolismo , Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Front Pharmacol ; 13: 989575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188536

RESUMO

Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.

16.
Eur J Med Chem ; 244: 114798, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215859

RESUMO

Glycolysis is a preferred metabolic pattern of cancer cells. Phosphoglycerate mutase 1 (PGAM1) is a pivotal glycolytic enzyme that catalyzes the reciprocal conversion between 2-phosphoglycerate and 3-phosphoglycerate. It also stimulates anabolic pathways, generates adenosine triphosphate, and keeps redox balance under hypoxic conditions. Mounting evidence supports that PGAM1 is overexpressed in many cancers and promotes their progression. The critical roles of PGAM1 in tumorigenesis make it a promising theranostical target for cancer. The aberrant expression of PGAM1 enables it to become a potential diagnosis gene for several cancers, and its heterogeneous regulations via interacting with its different ligands increase the possibility of it as a target for cancer therapy and discovery of tens of PGAM1 inhibitors, which can provide the potential feasibility for cancer treatment. This review provides insights into structure, function, and regulation of PGAM1, summarizes its mechanism in tumorigenesis, reviews the advanced status of PGAM1 inhibitors in cancer diagnosis and treatment, and finally emphasizes PGAM1 as an appealing theranostical target for cancer.


Assuntos
Neoplasias , Fosfoglicerato Mutase , Humanos , Neoplasias/metabolismo , Glicólise , Carcinogênese
17.
J Nanobiotechnology ; 20(1): 421, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153522

RESUMO

Light-mediated nanotherapeutics have recently emerged as promising strategies to precisely control the activation of therapeutic reagents and imaging probe both in vitro and in vivo, largely ascribed to their unique properties, including minimally invasive capabilities and high spatiotemporal resolution. Nanoscale metal-organic frameworks (NMOFs), a new family of hybrid materials consisting of metal attachment sites and bridging ligands, have been explored as a new platform for enhanced cancer diagnosis and therapy due to their tunable size, modifiable surface, good biocompatibility, high agent loading and, most significantly, their ability to be preferentially deposited in tumors through enhanced permeability and retention (EPR). Especially the light-driven NMOF-based therapeutic platform, which not only allow for increased laser penetration depth and enhanced targeting, but also enable imaging-guided or combined treatments. This review provides up-to-date developments of NMOF-based therapeutic platforms for cancer treatment with emphasis on light-triggered therapeutic strategies and introduces their advances in cancer diagnosis and therapy in recent years.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Terapia Combinada , Portadores de Fármacos , Humanos , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia
18.
Cell Rep ; 40(12): 111361, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130501

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) are supported and regulated by niche cells in the bone marrow with an important characterization of physiological hypoxia. However, how hypoxia regulates HSPCs is still unclear. Here, we find that meteorin (Metrn) from hypoxic macrophages restrains HSPC mobilization. Hypoxia-induced factor 1α and Yin Yang 1 induce the high expression of Metrn in macrophages, and macrophage-specific Metrn knockout increases HSPC mobilization through modulating HSPC proliferation and migration. Mechanistically, Metrn interacts with its receptor 5-hydroxytryptamine receptor 2b (Htr2b) to regulate the reactive oxygen species levels in HSPCs through targeting phospholipase C signaling. The reactive oxygen species levels are reduced in HSPCs of macrophage-specific Metrn knockout mice with activated phospholipase C signaling. Targeting the Metrn/Htr2b axis could therefore be a potential strategy to improve HSPC mobilization for stem cell-based therapy.


Assuntos
Células da Medula Óssea , Medula Óssea , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Espécies Reativas de Oxigênio/metabolismo , Receptores de Serotonina/metabolismo , Fosfolipases Tipo C/metabolismo
20.
Genes Dis ; 9(6): 1674-1688, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157485

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive and metastasizing cancer that has the worst prognosis out of all breast cancer subtypes. The epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) have been proposed as important mechanisms underlying TNBC metastasis. CDK9 is highly expressed in breast cancer, including TNBC, where it promotes EMT and induces cancer cell stemness. In this study, we have identified a tetrahydroisoquinoline derivative (compound 1) as a potent and selective CDK9-cyclin T1 inhibitor via virtual screening. Interestingly, by targeting the ATP binding site, compound 1 not only inhibited CDK9 activity but also disrupted the CDK9-cyclin T1 protein-protein interaction (PPI). Mechanistically, compound 1 reversed EMT and reduced the ratio of CSCs by blocking the CDK9-cyclin T1 interaction, leading to reduced TNBC cell proliferation and migration. To date, compound 1 is the first reported tetrahydroisoquinoline-based CDK9-cyclin T1 ATP-competitive inhibitor that also interferes with the interaction between CDK9 and cyclin T1. Compound 1 may serve as a promising scaffold for developing more selective and potent anti-TNBC agents. Our work also provides insight into the role of the CDK9-cyclin T1 PPI on EMT and CSCs and highlights the feasibility and significance of targeting CDK9 for the treatment of TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA