Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 282: 116745, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032405

RESUMO

Nitrogen (N), phosphorus (P) and potassium (K) are three macroelements in agriculture production, but their combined effects on arsenic (As) toxicity and its translocation in rice plants are not clear. In this study, an orthogonal rotation combination based on different N, P and K (NPK) concentration was first designed to examine their combined effect on the As toxicity, its transformation and migration in rice plants based on the hydroponic culture and pot soil culture. The results showed that 2.0 mg/L arsenite (As(III)) had obvious toxicity on the growth of indica LuYouMingZhan (LYMZ) and the optimal NPK concentration was 28.41, 6 and 50 mg/L based on the quadratic regression of the recovery rate of chlorophyll SPAD value of indica LYMZ. The optimal NPK combination significantly alleviated the physiological toxicity of As(III) on indica LYMZ rice seedling and decreased the accumulation of inorganic As in their roots and shoots by 23.8±1.8 % and 33.4±2.4 % respectively; further pot culture from different As(III) polluted soil showed that the optimal NPK combination significantly increased the dry weight of roots, stems, sheaths and leaves of indica LYMZ rice plants as well as yield indicators by 6.4 %-61.7 % and 7.1 %-89.8 % respectively, decreased the accumulation of As(III) and arsenate by 6.25 %-100 % and 12.36 %-100 % respectively in their roots, stems, sheaths, leaves, brans and kernels except As(III) concentration in their sheaths, decreased the accumulation of dimethylarsenate in their sheaths, leaves, brans and kernels, and had the best repair effect on the translocation of As species in 50 mg/kg As(III)-added soil. Our study provided a desirable strategy for alleviating As toxicity in paddy soil and reducing As pollution in rice plants.


Assuntos
Arsênio , Nitrogênio , Oryza , Fósforo , Potássio , Poluentes do Solo , Solo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Nitrogênio/metabolismo , Arsênio/toxicidade , Potássio/metabolismo , Solo/química , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Nutrientes , Agricultura/métodos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
2.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644022

RESUMO

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Solo , Oryza/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Selênio/análise , Selênio/metabolismo , Arsênio/análise , Arsênio/metabolismo , Solo/química , Arsenitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA