Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Synth Syst Biotechnol ; 10(1): 120-126, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39493337

RESUMO

(-)-α-Bisabolol is a plant-derived sesquiterpene derived from Eremanthus erythropappus, which can be used as a raw material in cosmetics and has anti-inflammatory function. In this study, we designed six mutation sites of the (-)-α-bisabolol synthase BOS using the plmDCA algorithm. Among these, the F324Y mutation demonstrated exceptional performance, increasing the product yield by 73 %. We constructed a de novo (-)-α-bisabolol biosynthesis pathways through systematic synthetic biology strategies, including the enzyme design of BOS, selection of different linkers in fusion expression, and optimization of the mevalonate pathway, weakening the branching metabolic flow and multi-copy strategies, the yield of (-)-α-bisabolol was significantly increased, which was nearly 35-fold higher than that of the original strain (2.03 mg/L). The engineered strain was capable of producing 69.7 mg/L in shake flasks. To the best of our knowledge, this is the first report on the biosynthesis of (-)-α-bisabolol in Komagataella phaffii, implying this is a robust cell factory for sustainable production of other terpenoids.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127967

RESUMO

Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.

3.
J Funct Biomater ; 15(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39194674

RESUMO

Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically active compound derived from selenium polysaccharides, have demonstrated potential in addressing obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by increasing the abundance of mucus-associated microbiota (Bifidobacterium, Akkermansia, and Muribaculaceae_unclassified) and decreasing the abundance of obesity-contributed bacterium (Anaerotruncus, Lachnoclostridium, and Proteus). The modulation of intestinal microbiota by LCS-SeNPs influenced several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan derivation. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the intervention of HFD-induced NAFLD.

4.
Food Chem ; 452: 139510, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718452

RESUMO

Lettuce, a globally consumed nutritious vegetable, is often linked to concerns regarding pesticide residues. To address this issue, we conducted field trials and utilized dynamiCROP modeling to examine the uptake, distribution, translocation, and dissipation of five pesticides (λ-cyhalothrin, difenoconazole, acetamiprid, dimethomorph, and ß-cypermethrin) commonly detected in lettuce. At harvest, pesticides residues were below the maximum residue limits (MRLs) at 0.05, 0.39, 0.047, 0.72, and 0.072 mg kg-1, respectively. Simulation results elucidated distinct behaviors of the pesticides following application to lettuce foliage across various compartments. However, all pesticides exhibited a common dissipation trend, initially stabilizing or increasing before gradually declining. For all five pesticides, the largest contribution of residues on lettuce leaves came from the leaf surface during the early period after application, and from the soil in the long term. Health risk assessments indicated negligible risks associated with consuming lettuce containing these pesticides, both in the short and long term.


Assuntos
Contaminação de Alimentos , Lactuca , Resíduos de Praguicidas , Lactuca/química , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Humanos , Qualidade de Produtos para o Consumidor
5.
Biomed Pharmacother ; 175: 116748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776683

RESUMO

Doxorubicin (DOX) is a commonly used anthracycline in cancer chemotherapy. The clinical application of DOX is constrained by its cardiotoxicity. Myricetin (MYR) is a natural flavonoid widely present in many plants with antioxidant and anti-inflammatory properties. However, MYR's beneficial effects and mechanisms in alleviating DOX-induced cardiotoxicity (DIC) remain unknown. C57BL/6 mice were injected with 15 mg/kg of DOX to establish the DIC, and MYR solutions were administrated by gavage to investigate its cardioprotective potentials. Histopathological analysis, physiological indicators assessment, transcriptomics analysis, and RT-qPCR were used to elucidate the potential mechanism of MYR in DIC treatment. MYR reduced cardiac injury produced by DOX, decreased levels of cTnI, AST, LDH, and BNP, and improved myocardial injury and fibrosis. MYR effectively prevented DOX-induced oxidative stress, such as lowered MDA levels and elevated SOD, CAT, and GSH activities. MYR effectively suppressed NLRP3 and ASC gene expression levels to inhibit pyroptosis while regulating Caspase1 and Bax levels to reduce cardiac cell apoptosis. According to the transcriptomic analysis, glucose and fatty acid metabolism were associated with differential gene expression. KEGG pathway analysis revealed differential gene enrichment in PPAR and AMPK pathways, among others. Following validation, MYR was found to alleviate DIC by regulating glycolipid metabolism and AMPK pathway-related genes. Our findings demonstrated that MYR could mitigate DIC by regulating the processes of oxidative stress, apoptosis, and pyroptosis. MYR is critical in improving DOX-induced myocardial energy metabolism abnormalities mediated by the AMPK signaling pathway. In conclusion, MYR holds promise as a therapeutic strategy for DIC.


Assuntos
Cardiotoxicidade , Doxorrubicina , Flavonoides , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Doxorrubicina/toxicidade , Flavonoides/farmacologia , Cardiotoxicidade/prevenção & controle , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Cardiotônicos/farmacologia , Apoptose/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677072

RESUMO

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Assuntos
Clorpirifos , Proteínas de Choque Térmico HSP70 , Nitrilas , Oligoquetos , Estresse Oxidativo , Piretrinas , Poluentes do Solo , Superóxido Dismutase , Animais , Oligoquetos/efeitos dos fármacos , Clorpirifos/toxicidade , Piretrinas/toxicidade , Nitrilas/toxicidade , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Carboxilesterase/metabolismo , Inseticidas/toxicidade , Caspase 3/metabolismo , Caspase 3/genética , Calreticulina/genética , Calreticulina/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética
7.
J Adv Res ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38341033

RESUMO

BACKGROUND: Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW: This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW: In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.

8.
J Hazard Mater ; 465: 133254, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103297

RESUMO

Antibiotic residues and antibiotic resistance genes (ARGs) in fruits and vegetables pose public health risks via the food chain, attracting increased attention. Antibiotics such as streptomycin, used directly on seedless grapes or introduced into vineyard soil through organic fertilizers. However, extensive data supporting the risk assessment of antibiotic residues and resistance in these produce remains lacking. Utilizing metagenomic sequencing, we characterized Shine Muscat grape antibiotic resistome and mobile genetic elements (MGEs). Abundant MGEs and ARGs were found in grapes, with 174 ARGs on the grape surface and 32 in the fruit. Furthermore, our data indicated that soil is not the primary source of these MGEs and ARGs. Escherichia was identified as an essential carrier and potential transmitter of ARGs. In our previous study, streptomycin residue was identified in grapes. Further short-term exposure experiments in mice revealed no severe physiological or histological damage at several environment-related concentrations. However, with increased exposure, some ARGs levels in mouse gut microbes increased, indicating a potential threat to animal health. Overall, this study provides comprehensive insights into the resistance genome and potential hosts in grapes, supporting the risk assessment of antibiotic resistance in fruits and vegetables.


Assuntos
Antibacterianos , Vitis , Animais , Camundongos , Antibacterianos/farmacologia , Genes Bacterianos , Estreptomicina , Resistência Microbiana a Medicamentos/genética , Solo/química , Medição de Risco
9.
Nat Commun ; 14(1): 7758, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012202

RESUMO

Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.


Assuntos
Vibrio , Vibrio/metabolismo , Formiatos/metabolismo , Carbono/metabolismo
10.
Environ Pollut ; 335: 122275, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37532218

RESUMO

Microplastics (MPs) are widely distributed in the global environment, entering and accumulating in organisms in various ways and posing health threats. MPs can damage intestine; however, the mechanism by which MPs cause intestinal damage in rats is unclear. Here, rats were exposed to 50 nm PS-NPs or 5 µm PS-MPs for 4 weeks to evaluate the possible effects on intestinal barrier function and exosomal miRNAs expressions. The results showed that PS-NPs or PS-MPs disrupted the gut microbiota and affected gut barrier function at the biological level. In addition, PS-NPs and PS-MPs altered the composition of exosomal miRNAs in the intestinal and serum. Both PS-NPs and PS-MPs decreased the expression of miR-126a-3p in the intestinal and serum exosomes, which is an important signalling molecule involved in MPs induced gut barrier function disorder. More importantly, both in vitro and in vivo experiments indicated that miR-126a-3p was closely related to oxidative damage of intestinal cells through the PI3K-Akt pathway and eventually promote cell apoptosis by regulating the target gene of PIK3R2. Our study suggested that PS-NPs and PS-MPs could affect rat intestinal barrier function through an exosomal miRNA mediated pathway.


Assuntos
MicroRNAs , Poluentes Químicos da Água , Animais , Ratos , Plásticos , Poliestirenos , Fosfatidilinositol 3-Quinases , Microplásticos/toxicidade
11.
J Food Prot ; 86(10): 100145, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604252

RESUMO

Dissipation, residue levels, and ingestion risks of carbendazim in peach (Amygdalus persica L.) were investigated with individual and joint applications in the present study. The dissipation kinetics of carbendazim, chlorpyrifos, prochloraz, and imidacloprid were evaluated by the first-order kinetics. When carbendazim was individually applied, the final residual concentration was 2.97 mg kg-1 and the half-life was 17.4 d. In the joint application of carbendazim with chlorpyrifos, prochloraz, and imidacloprid, the residual concentrations at 35 d after spraying were 7.16, 7.50, and 4.26 mg kg-1 and the half-lives were 30.8, 23.7, and 23.2 d, respectively, which showed an increase of 1.3-1.8 times compared with the single application of carbendazim. In addition, the effects of household processing of rinsing and peeling were investigated, and a high removal rate of 54.6% and 76.5% were found. Furthermore, the carbendazim ingestion risk assessment was conducted, which indicated that the acute health risk (aHI) and hazard quotient (HQ) of carbendazim were all within acceptable levels ranging from 21.7% to 40.9%. However, a higher ingestion risk of carbendazim was found under the joint application. This study provides some preliminary guidance for the joint application and risk assessment of carbendazim in peach, which is worth further investigation.


Assuntos
Clorpirifos , Resíduos de Praguicidas , Prunus persica , Medição de Risco , Resíduos de Praguicidas/análise
12.
Huan Jing Ke Xue ; 44(7): 4151-4161, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438312

RESUMO

In order to understand the heavy metal contamination of soil and vegetables in the vegetable production system of Zhejiang Province and the health risks of vegetables consumed by residents, typical vegetable production bases in Zhejiang Province were selected as the study areas; 102 pairs of vegetable and soil samples were collected; the distribution characteristics of heavy metals Cd, Cu, Pb, Cr, As, Ni, and Hg in the vegetable production system of Zhejiang Province were analyzed, and the ecological health risks of the vegetable production system were systematically evaluated using the Nemerow composite pollution index, potential ecological risk index, and dietary exposure assessment model. The results showed that Cd in the soil seriously exceeded the standard, with an exceedance rate of 97.2%. The main risk of soil pollution was moderate and mild, and the highest risk was Cd, followed by Pb, Cu, and As. Among vegetables, only a small amount of bean and fruit vegetables exceeded the Cd content, with the exceedance rates of 12.5% and 8.7%, respectively. The BCF of different types of vegetables differed significantly and could be ranked accordingly:leafy vegetables>bean vegetables>melon vegetables>root vegetables. The non-carcinogenic and carcinogenic risks of Zhejiang residents consuming local vegetables were within acceptable limits, with children being more at risk than adults (P<0.01), and Cd and Pb contributing the most to health risks. The overall vegetables produced by the vegetable production system in Zhejiang Province were at a safe level, but there is a need to strengthen the control of Cd and Pb pollution sources.


Assuntos
Metais Pesados , Verduras , Adulto , Criança , Humanos , Cádmio , Chumbo , Poluição Ambiental
13.
Sci Total Environ ; 900: 165732, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37495145

RESUMO

Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.


Assuntos
Bivalves , Poluentes Químicos da Água , Humanos , Animais , Organismos Aquáticos , Peixe-Zebra , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Meio Ambiente , Psicotrópicos/toxicidade
14.
Toxics ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36851059

RESUMO

Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.

15.
Environ Pollut ; 317: 120806, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470454

RESUMO

Insect pollinators are routinely exposed to a complex mixture of many pesticides. However, traditional environmental risk assessment is only carried out based on ecotoxicological data of single substances. In this context, we aimed to explore the potential effects when worker honey bees (Apis mellifera L.) were simultaneously challenged by thiamethoxam (TMX) and flusilazole (FSZ). Results displayed that TMX possessed higher toxicity to A. mellifera (96-h LC50 value of 0.11 mg a. i. L-1) than FSZ (96-h LC50 value of 738 mg a. i. L-1). Furthermore, the mixture of TMX and FSZ exhibited an acute synergistic impact on the pollinators. Meanwhile, the activities of SOD, caspase 3, caspase 9, and PPO, as well as the expressions of six genes (abaecin, dorsal-2, defensin-2, vtg, caspase-1, and CYP6AS14) associated with oxidative stress, immune response, lifespan, cell apoptosis, and detoxification metabolism were noteworthily varied in the individual and mixture challenges than at the baseline level. These data revealed that it is imminently essential to investigate the combined toxicity of pesticides since the toxicity evaluation from individual compounds toward honey bees may underestimate the toxicity in realistic conditions. Overall, the present results could help understand the potential contribution of pesticide mixtures to the decline of bee populations.


Assuntos
Inseticidas , Praguicidas , Abelhas , Animais , Tiametoxam/toxicidade , Inseticidas/toxicidade , Praguicidas/toxicidade , Triazóis/toxicidade , Neonicotinoides/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-36064135

RESUMO

Bromuconazole (BRO), as one of the typical triazole fungicides, has not been reported on its effects on aquatic organisms. In this study, zebrafish embryos were used as experimental objects to evaluate the toxicity of BRO. In the acute embryo toxicity test, it was observed that the heart rate and growing development were affected by BRO in a concentration-dependent manner, and the half-lethal concentration (LC50) of BRO at 96 h post-fertilization (hpf) was about 11.83 mg/L. Then, low concentrations of BRO (50 ng/L, 0.075 mg/L, 0.3 mg/L, 1.2 mg/L), which were set according to the LC50 and environmental related concentrations, were used to analyze the toxic effects on the different endpoints in larval zebrafish. Interestingly, the transcriptomic analysis found that most different expressed genes (DEGs) could be focused on the pathways of lipid metabolism, myocardial function, glycometabolism, indicating that heart function and lipid metabolism in larval zebrafish were disrupted by BRO. For supporting this idea, we re-exposed the transgenic zebrafish and WT zebrafish embryos, proved that BRO caused damage to heart development and lipid transport on morphological and genetic level, which was consistent with transcriptomic results. In addition, BRO exposure caused oxidative damage in the larvae. Taken together, BRO exposure could affect the myocardial contraction function and lipid transport in larval zebrafish, accompanied by disturbances in the level of oxidative stress, which was of great significance for improving the biotoxicological information of BRO.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Fungicidas Industriais/toxicidade , Furanos , Larva , Lipídeos , Estresse Oxidativo , Triazóis/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
17.
Front Plant Sci ; 13: 945553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903234

RESUMO

Brassica napus as both oilseed and vegetable, is widely cultivated in China. The purple leaf of B. napus is rich in anthocyanins and can provide valuable nutrients. Although several high-anthocyanin cultivars have been reported, the molecular mechanism underlying anthocyanin biosynthesis in B. napus remains lesser-known. Therefore, in this study, we conducted integrative metabolome and transcriptome analyses in three B. napus cultivars with different leaf colors. Overall, 39 flavonoids were identified (including 35 anthocyanins), and 22 anthocyanins were differentially accumulated in the leaves, contributing to the different leaf colors. Cyanidin-3,5,3'-O-triglucoside was confirmed as the main contributor of the purple leaf phenotype. Meanwhile, other anthocyanins may play important roles in deepening the color of B. napus leaves. A total of 5,069 differentially expressed genes (DEGs) and 32 overlapping DEGs were identified by RNA-sequencing; hence, the correlation between anthocyanin content and DEG expression levels was explored. Two structural genes (DFR and ANS), three GSTs (homologous to TT19), and 68 differentially expressed transcription factors (TFs), especially MYB-related TFs and WRKY44, were identified in three B. napus varieties characterized by different leaf color, thereby indicating that these genes may contribute to anthocyanin biosynthesis, transport, or accumulation in B. napus leaves. The findings of study provide important insights that may contribute to gaining a better understanding of the transcriptional regulation of anthocyanin metabolism in B. napus.

18.
J Hazard Mater ; 439: 129644, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882171

RESUMO

The combined toxicity of heavy metals and pesticides to aquatic organisms is still largely unexplored. In this study, we investigated the combined impacts of cadmium (Cd) and carbofuran (CAR) on female zebrafish (F0 generation) and their following F1 generation. Results showed that mixtures of Cd and CAR induced acute synergistic effects on both zebrafish adults of the F0 generation and embryos of the F1 generation. Combined exposure to Cd and CAR could obviously alter the hepatic VTG level of females, and the individual exposures increased the relative mRNA levels of vtg1 and vtg2. Through maternal transmission, co-exposure of Cd and CAR caused toxicity to 4-day-old larvae of the F1 generation, evidenced by the significant changes in T4 and VTG levels, CYP450 activity, and the relative transcriptional levels of genes related to the hormone, oxidative stress, and apoptosis. These effects were also reflected by the global gene expression pattern to 7-day-old larvae of F1 generation using the transcriptomic analysis, and they could also affect energy metabolism. Our results provided a more comprehensive insight into the transgenerational toxic impacts of heavy metal and pesticide mixtures. These findings highlighted that it was highly necessary to consider transgenerational exposures in the ecological risk assessment of chemical mixtures.


Assuntos
Carbofurano , Metais Pesados , Praguicidas , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Carbofurano/metabolismo , Carbofurano/toxicidade , Feminino , Larva , Metais Pesados/metabolismo , Praguicidas/metabolismo , Transcriptoma , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Sci Total Environ ; 844: 156884, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35752249

RESUMO

The potential health effects of microplastics (MPs) have become a public concern due to their ubiquitousness in the environment and life. Numerous studies have demonstrated that a high dose of MPs can adversely affect gastrointestinal health. However, few studies have focused on the impact of microplastics on patients' health with respect to gastrointestinal diseases. Inflammatory bowel disease (IBD) has emerged as a global disease with a rapidly increasing incidence. IBD, a specific gastrointestinal illness characterized by acute, chronic inflammation and intestinal barrier dysfunction, might increase sensitivity to MPs exposure. Herein, we investigated the impact and mechanism of PS-MPs on dextran sodium sulfate (DSS)-induced colitis. The results demonstrated that gavage with PS-MPs alone caused minimal effects on the intestinal barrier and liver status of mice. For mice with colitis, additional PS-MPs exposure caused a shorter colon length, aggravated histopathological damage and inflammation, reduced mucus secretion, and increased the colon permeability. Furthermore, PS-MPs exposure also increased the risk of secondary liver injury associated with inflammatory cell infiltration. These findings provide more histopathological evidence and suggest a need for more research on the health risk of MPs for sensitive individuals.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Camundongos , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade
20.
Pestic Biochem Physiol ; 182: 105028, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249660

RESUMO

Catechin is a biological compound in green tea (Camellia sinesis), which has anti-oxidant, anti-cancer, anti-apoptotic, anti-inflammatory, and attenuated effects in different experimental models. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, has resulted in oxidative stress, mitochondrial dysfunction, and apoptosis in zebrafish. The goal of this study is to assess whether catechin can alleviate CPF-induced oxidative damage and apoptosis in the early developmental stage of zebrafish. According to the results, we observed that 200 µg/L CPF exposure could induce oxidative stress, ROS production and changing the antioxidant-related enzymes and genes in larval zebrafish. Interestingly, catechin had the potential to reduce the oxidative damage and cell apoptosis caused by CPF exposure in larval zebrafish at different endpoints. Especially, catechin could promote the contents of GSH and activity of GST in zebrafish larvae injured by CPF, suggesting that catechin could repair oxidative damage at a certain degree by regulating the activities and gene transcription of some key enzymes related to GSH pathway in zebrafish. In addition, at transcriptional levels, a high concentration of catechin exposure reduced the expression genes of Mn-SOD, Cat, gst, and GPX induced by CPF in larval zebrafish. These genes mainly reflected the degree of oxidative damage of zebrafish, which was basically consistent with the enzyme activity. Catechin also could reduce the transcription of p53 and bax, which are tightly related to the apoptosis induced by CPF in zebrafish larvae. The expression of genes was consistent with ROS production, which proved that catechin could alleviate the apoptosis induced by CPF. This study discovered that catechin had some antioxidant effects in aquatic animals to reduce the toxicity caused by pesticides and offered the scientific basis for the utilization and development of catechin.


Assuntos
Catequina , Clorpirifos , Animais , Catequina/metabolismo , Catequina/farmacologia , Clorpirifos/toxicidade , Larva , Estresse Oxidativo , Chá , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA