Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Nano Lett ; 24(29): 8843-8850, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007508

RESUMO

A kagome lattice hosts a plethora of quantum states arising from the interplay between nontrivial topology and electron correlations. The recently discovered kagome magnet RMn6Sn6 (R represents a rare-earth element) is believed to showcase a kagome band closely resembling textbook characteristics. Here, we report the characterization of local electronic states and their magnetization response in YMn6Sn6 via scanning tunneling microscopy measurements under vector magnetic fields. Our spectroscopic maps reveal a spontaneously trimerized kagome electronic order in YMn6Sn6, where the 6-fold rotational symmetry is disrupted while translational symmetry is maintained. Further application of an external magnetic field demonstrates a strong coupling of the YMn6Sn6 kagome band to the field, which exhibits an energy shift discrepancy under different field directions, implying the existence of magnetization-response anisotropy and anomalous g factors. Our findings establish YMn6Sn6 as an ideal platform for investigating kagome-derived orbital magnetic moment and correlated magnetic topological states.

2.
Eye (Lond) ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068250

RESUMO

OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) platform in the form of an applet that facilitates the screening and management of strabismus on any mobile device. METHODS: The Visual Transformer (VIT_16_224) was developed using primary gaze photos from two datasets covering different ages. The AI model was evaluated by 5-fold cross-validation set and tested on an independent test set. The diagnostic performance of the AI model was assessed by calculating the Accuracy, Precision, Specificity, Sensitivity, F1-Score and Area Under the Curve (AUC). RESULTS: A total of 6194 photos with corneal light-reflection (with 2938 Exotropia, 1415 Esotropia, 739 Vertical Deviation and 1562 Orthotropy) were included. In the internal validation set, the AI model achieved an Accuracy of 0.980, Precision of 0.941, Specificity of 0.979, Sensitivity of 0.958, F1-Score of 0.951 and AUC of 0.994. In the independent test set, the AI model achieved an Accuracy of 0.967, Precision of 0.980, Specificity of 0.970, Sensitivity of 0.960, F1-Score of 0.975 and AUC of 0.993. CONCLUSIONS: Our study presents an advanced AI model for strabismus screening which integrates electronic archives for comprehensive patient histories. Additionally, it includes a patient-physician interaction module for streamlined communication. This innovative platform offers a complete solution for strabismus care, from screening to long-term follow-up, advancing ophthalmology through AI technology for improved patient outcomes and eye care quality.

3.
Neural Regen Res ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993123

RESUMO

ABSTRACT: AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor (bFGF) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.

4.
Commun Biol ; 7(1): 854, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997510

RESUMO

The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adolescente , Criança , Adulto Jovem , Adulto , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
5.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949537

RESUMO

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Feminino , Idoso , Adulto , Criança , Adulto Jovem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Idoso de 80 Anos ou mais , Pré-Escolar , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Tamanho da Amostra
6.
Aging Dis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38607735

RESUMO

This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.

7.
Sci Rep ; 14(1): 7364, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548903

RESUMO

Esophagogastric variceal bleeding (EVB) is one of the common digestive system emergencies with poor prognosis and high rate of rebleeding after treatment. To explore the effects of endoscopic therapy and drug therapy on the prognosis and rebleeding of patients with EVB, and then select better treatment methods to effectively improve the prognosis. From January 2013 to December 2022, 965 patients with EVB who were hospitalized in gastroenterology Department of the 940 Hospital of Joint Logistic Support Forces of PLA were retrospectively analyzed. Patients were divided into endoscopic treatment group (ET, n = 586) and drug treatment group (DT, n = 379). Propensity score matching (PSM) analysis was performed in both groups, and the general information, efficacy and length of hospital stay were recorded. The patients were followed up for 3 months after bleeding control to determine whether rebleeding occurred. There were 286 cases in each group after PSM. Compared with DT group, ET had higher treatment success rate (P < 0.001), lower rebleeding rate (P < 0.001), lower mortality rate within 3 months, and no significant difference in total hospital stay (P > 0.05). Compared with drug therapy, endoscopic treatment of EVB has short-term efficacy advantages, and can effectively reduce the incidence of rebleeding and mortality within 3 months.


Assuntos
Varizes Esofágicas e Gástricas , Humanos , Varizes Esofágicas e Gástricas/complicações , Varizes Esofágicas e Gástricas/terapia , Estudos Retrospectivos , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/terapia , Endoscopia/efeitos adversos , Prognóstico , Resultado do Tratamento , Recidiva
8.
J Cereb Blood Flow Metab ; 44(7): 1102-1116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38388375

RESUMO

Astrocytes undergo disease-specific transcriptomic changes upon brain injury. However, phenotypic changes of astrocytes and their functions remain unclear after hemorrhagic stroke. Here we reported hemorrhagic stroke induced a group of inflammatory reactive astrocytes with high expression of Gfap and Vimentin, as well as inflammation-related genes lipocalin-2 (Lcn2), Complement component 3 (C3), and Serpina3n. In addition, we demonstrated that depletion of microglia but not macrophages inhibited the expression of inflammation-related genes in inflammatory reactive astrocytes. RNA sequencing showed that blood-brain barrier (BBB) disruption-related gene matrix metalloproteinase-3 (MMP3) was highly upregulated in inflammatory reactive astrocytes. Pharmacological inhibition of MMP3 in astrocytes or specific deletion of astrocytic MMP3 reduced BBB disruption and improved neurological outcomes of hemorrhagic stroke mice. Our study demonstrated that hemorrhagic stroke induced a group of inflammatory reactive astrocytes that were actively involved in disrupting BBB through MMP3, highlighting a specific group of inflammatory reactive astrocytes as a critical driver for BBB disruption in neurological diseases.


Assuntos
Astrócitos , Barreira Hematoencefálica , Acidente Vascular Cerebral Hemorrágico , Metaloproteinase 3 da Matriz , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Metaloproteinase 3 da Matriz/metabolismo , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/metabolismo , Masculino , Inflamação/metabolismo , Inflamação/patologia , Complemento C3/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Vimentina/metabolismo
9.
Stroke Vasc Neurol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191183

RESUMO

BACKGROUND: Low-intensity focused ultrasound stimulation (LIFUS) has been developed to enhance neurological repair and remodelling during the late acute stage of ischaemic stroke in rodents. However, the cellular and molecular mechanisms of neurological repair and remodelling after LIFUS in ischaemic stroke are unclear. METHODS: Ultrasound stimulation was treated in adult male mice 7 days after transient middle cerebral artery occlusion. Angiogenesis was measured by laser speckle imaging and histological analyses. Electromyography and fibre photometry records were used for synaptogenesis. Brain atrophy volume and neurobehaviour were assessed 0-14 days after ischaemia. iTRAQ proteomic analysis was performed to explore the differentially expressed protein. scRNA-seq was used for subcluster analysis of astrocytes. Fluorescence in situ hybridisation and Western blot detected the expression of HMGB1 and CAMK2N1. RESULTS: Optimal ultrasound stimulation increased cerebral blood flow, and improved neurobehavioural outcomes in ischaemic mice (p<0.05). iTRAQ proteomic analysis revealed that the expression of HMGB1 increased and CAMK2N1 decreased in the ipsilateral hemisphere of the brain at 14 days after focal cerebral ischaemia with ultrasound treatment (p<0.05). scRNA-seq revealed that this expression pattern belonged to a subcluster of astrocytes after LIFUS in the ischaemic brain. LIFUS upregulated HMGB1 expression, accompanied by VEGFA elevation compared with the control group (p<0.05). Inhibition of HMGB1 expression in astrocytes decreased microvessels counts and cerebral blood flow (p<0.05). LIFUS reduced CAMK2N1 expression level, accompanied by increased extracellular calcium ions and glutamatergic synapses (p<0.05). CAMK2N1 overexpression in astrocytes decreased dendritic spines, and aggravated neurobehavioural outcomes (p<0.05). CONCLUSION: Our results demonstrated that LIFUS promoted angiogenesis and synaptogenesis after focal cerebral ischaemia by upregulating HMGB1 and downregulating CAMK2N1 in a subcluster of astrocytes, suggesting that LIFUS activated specific astrocyte subcluster could be a key target for ischaemic brain therapy.

10.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255866

RESUMO

Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.


Assuntos
Quimiocina CXCL12 , AVC Isquêmico , Células-Tronco Mesenquimais , Transplante de Células-Tronco , Animais , Camundongos , Benzilaminas/farmacologia , Quimiocina CXCL12/genética , Ciclamos/farmacologia , Engenharia Genética , AVC Isquêmico/terapia , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Cereb Blood Flow Metab ; 44(3): 367-383, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974301

RESUMO

The crosstalk between reactive astrocytes and infiltrated immune cells plays a critical role in maintaining blood-brain barrier (BBB) integrity. However, how astrocytes interact with immune cells and the effect of their interaction on BBB integrity after hemorrhagic stroke are still unclear. By performing RNA sequencing in astrocytes that were activated by interleukin-1α (IL-1α), tumor necrosis factor α (TNFα), and complement component 1q (C1q) treatment, we found CCL5 was among the top upregulated genes. Immunostaining and western blot results demonstrated that CCL5 was increased in mice brain after hemorrhagic stroke. Flow cytometry showed that knockout of astrocytic CCL5 reduced the infiltration of CD8+ but not CD4+ T and myeloid cells into the brain (p < 0.05). In addition, knockout CCL5 in astrocytes increased tight junction-related proteins ZO-1 and Occludin expression; reduced Evans blue leakage, perforin and granzyme B expression; improved neurobehavioral outcomes in hemorrhagic stroke mice (p < 0.05), while transplantation of CD8+ T cells reversed these protective effects. Moreover, co-culture of CD8+ T cells with bEnd.3 cells induced the apoptosis of bEnd.3 cells, which was rescued by inhibiting perforin. In conclusion, our study suggests that CCL5 mediated crosstalk between astrocytes and CD8+ T cells represents an important therapeutic target for protecting BBB in stroke.


Assuntos
Barreira Hematoencefálica , Quimiocina CCL5 , Acidente Vascular Cerebral Hemorrágico , Animais , Camundongos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Linfócitos T CD8-Positivos , Comunicação Celular , Células Endoteliais/metabolismo , Acidente Vascular Cerebral Hemorrágico/metabolismo , Perforina/metabolismo , Perforina/farmacologia , Quimiocina CCL5/metabolismo
13.
Int J Pharm ; 649: 123656, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38040392

RESUMO

Neuroprotection is one of the core treatment strategies for brain injuries including traumatic brain injury (TBI). NR2B9c is a promising neuroprotective peptide but its clinical translation is limited because of poor brain penetrability. Exosomes are naturally occurring nanovesicles having therapeutic potential for TBI as well as an efficient drug delivery carrier to the brain. Here, we engineered exosomes with neuron targeting peptide rabies virus glycoprotein (RVG29) via bio-orthogonal click chemistry technique and loaded it with NR2B9c, developing RVG-ExoNR2B9c. RVG29 conjugated exosome had higher neuron targeting efficiency compared to naïve exosomes both in vivo and in vitro. RVG-ExoNR2B9c had great cytoprotective effect against oxygen glucose deprived Neuro2a cells. Intravenous administration of RVG-ExoNR2B9c significantly improved behavioral outcomes and reduced the lesion volume after TBI injury in a mice controlled cortical impact model. Due to their multifunctionality and significant efficacy, we anticipate that RVG-ExoNR2B9c have the potential to be translated both as therapeutic agent as well as cargo delivery system to the brain for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Camundongos , Animais , Neuroproteção , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Encéfalo , Peptídeos , Portadores de Fármacos/farmacologia
14.
Stroke Vasc Neurol ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788912

RESUMO

At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.

15.
J Control Release ; 363: 585-596, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793483

RESUMO

Delivering large therapeutic molecules via the blood-brain barrier to treat ischemic stroke remains challenging. NR2B9c is a potent neuroprotective peptide but it's safe and targeted delivery to the brain requires an efficient, natural, and non-immunogenic delivery technique. Small extracellular vesicles (sEVs) have shown great potential as a non-immunogenic, natural cargo delivery system; however, tailoring of its inefficient brain targeting is desired. Here, we coupled rabies virus glycoprotein 29 with sEVs surface via bio-orthogonal click chemistry reactions, followed by loading of NR2B9c, ultimately generating stroke-specific therapeutic COCKTAIL (sEVs-COCKTAIL). Primary neurons and Neuro-2a cells were cultured for in vitro and transient middle cerebral artery occlusion model was used for in vivo studies to evaluate neuron targeting and anti-ischemic stroke potential of the sEVs-COCKTAIL. Bio-clickable sEVs were selectively taken up by neurons but not glial cells. In the in vitro ischemic stroke model of oxygen-glucose deprivation, the sEVs-COCKTAIL exhibited remarkable potential against reactive oxygen species and cellular apoptosis. In vivo studies further demonstrated the brain targeting and increased half-life of bio-clickable sEVs, delivering NR2B9c to the ischemic brain and reducing stroke injury. Treatment with the sEVs-COCKTAIL significantly increased behavioral recovery and reduced neuronal apoptosis after transient middle cerebral artery occlusion. NR2B9c was delivered to neurons binding to post-synaptic density protein-95, inhibiting N-methyl-d-Aspartate receptor-mediated over production of oxidative stress and mitigating protein B-cell lymphoma 2 and P38 proteins expression. Our results provide an efficient and biocompatible approach to a targeted delivery system, which is a promising modality for stroke therapy.


Assuntos
Isquemia Encefálica , Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Vesículas Extracelulares/metabolismo
16.
Front Pharmacol ; 14: 1227787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767401

RESUMO

Purpose: To comprehensively reassess the efficacy and safety of different concentrations of atropine for retarding myopia progression and seek the most appropriate therapeutic concentration for clinical practice. Methods: We searched PubMed, Cochrane Library, Embase, Chinese Science and Technology Periodicals (VIP) and China National Knowledege Infrastructure (CNKI) from their inception to 23 March 2023, to obtain eligible randomized controlled trials (RCTs) and cohort studies that had atropine in at least one treatment arm and placebo/no intervention in another arm. We evaluated the risk of bias of the RCTs according to the recommendations of the Cochrane Collaboration for RCTs and quality of cohort studies by the Newcastle‒Ottawa Scale. Weighted mean difference (WMD), 95% confidence interval were calculated for meta-analysis. All data analyses were performed using Review Manager 5.3, STATA 12.0 and SPSS 26.0 software. Results: A total of 44 studies were included in the meta-analysis. Weighted mean difference (WMD) were 0.73 diopters (D), 0.65 D, 0.35 D per year in refraction progression (χ 2 = 14.63, I 2 = 86.3%; p < 0.001) and -0.26 mm, -0.37 mm, -0.11 mm per year in axial length progression (χ 2 = 5.80, I 2 = 65.5%; p = 0.06) for high (0.5%-1%), moderate (0.1%-0.25%), and low (0.005%-0.05%) dose atropine groups, respectively. Logarithmic dose‒response correlations were found between atropine and their effect on change of refraction, axial length, accommodation and photopic pupil diameter. Through these curves, we found that atropine with concentrations ≤0.05% atropine resulted in a residual value of accommodation of more than 5 D and an increase in pupil diameter no more than 3 mm. Higher doses of atropine resulted in a higher incidence of adverse effects, of which the incidence of photophobia was dose-dependent (r = 0.477, p = 0.029). Conclusion: Both the efficacy and risk of adverse events for atropine treatment of myopia were mostly dose dependent. Comprehensively considered the myopia control effect and safety of each dose, 0.05% may be the best concentration of atropine to control myopia progression at present, at which myopia is better controlled and the side effects are tolerable. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, CRD42022377705.

17.
Stroke ; 54(10): 2629-2639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586072

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) derived from M2 microglia (M2-microglia-derived small extracellular vesicles [M2-sEVs]) contribute to central nervous system repair, although the underlying mechanism remains unknown. In this study, we aimed to identify the mechanism through which microRNA-124 (miR-124) carried in sEVs promotes neural stem cell (NSC) proliferation and neuronal differentiation in the ischemic mouse brain. METHODS: M2-sEVs with or without miR-124 knockdown were injected intravenously for 7 consecutive days after transient middle cerebral artery occlusion surgery. The atrophy volume, neurological score, and degree of neurogenesis were examined at different time points after ischemic attack. NSCs treated with different sEVs were subjected to proteomic analysis. Target protein concentrations were quantified, and subsequent bioinformatic analysis was conducted to explore the key signaling pathways. RESULTS: M2-sEV transplantation promoted functional neurological recovery following transient middle cerebral artery occlusion injury. M2-sEV treatment decreased the brain atrophy volume, neurological score, and mortality rate. The effect was reserved by knockdown of miR-124 in M2-sEVs. M2-sEVs promoted proliferation and differentiation of mature neuronal NSCs in vivo. Proteomic analysis of NSC samples treated with M2-sEVs with and without miR-124 knockdown revealed that AAK1 (adaptor-associated protein kinase 1) was the key responding protein in NSCs. The binding of AAK1 to Notch promoted the differentiation of NSCs into neurons rather than astrocytes. CONCLUSIONS: Our data suggest that AAK1/Notch is the key pathway in NSCs that responds to the miR-124 carried within M2-sEVs in the ischemic brain. M2-sEVs carrying ample quantities of miR-124 promote functional recovery after ischemic stroke by enhancing NSC proliferation and differentiation. Targeting of M2-sEVs could represent a potential therapeutic strategy for brain recovery.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , MicroRNAs , Células-Tronco Neurais , Camundongos , Animais , Microglia/metabolismo , AVC Isquêmico/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Proteômica , Diferenciação Celular , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
Aging Dis ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37611902

RESUMO

Protecting the integrity of the blood-brain barrier (BBB) is crucial for maintaining brain homeostasis after ischemic stroke. Previous studies showed that M2 microglial extracellular vesicles (EVs) played a neuroprotective role in cerebral ischemia. However, the role of M2 microglial EVs in maintaining BBB integrity is unclear. Therefore, we explored the mechanisms of M2 microglial EVs in regulating BBB integrity. To identify microglial EVs, we used nanoparticle tracking analysis, transmission electron microscopy, and western blot analysis. Adult male ICR mice were subjected to 90-min middle cerebral artery occlusion (MCAO), followed by the injection of PKH26-labeled M2 microglial EVs via the tail vein. After MCAO, we assessed brain infarct and edema volume, as well as modified neurological severity score. BBB integrity was measured by assessing IgG leakage. The effects of M2 microglial EVs on astrocytes and endothelial cells were also examined. To investigate the molecular mechanisms, we performed RNA sequencing, miR-23a-5p knockdown, and luciferase reporter assays. Our results showed that PKH26-labeled microglial EVs were mainly taken up by neurons and glial cells. M2 microglial EVs treatment decreased brain infarct and edema volume, modified neurological severity score, and IgG leakage, while increasing the ZO-1, occludin, and claudin-5 expression after MCAO. Knockdown of miR-23a-5p reversed these effects. RNA sequencing revealed that the TNF, MMP3 and NFκB signaling pathway involved in regulating BBB integrity. Luciferase reporter assay showed that miR-23a-5p could bind to the 3' UTR of TNF. M2 microglial EVs-derived miR-23a-5p decreased TNF, MMP3 and NFκB p65 expression in astrocytes after oxygen-glucose deprivation, thereby increasing ZO-1 and Claudin-5 expression in bEnd.3 cells. In conclusion, our findings demonstrated that M2 microglial EVs attenuated BBB disruption after cerebral ischemia by delivering miR-23a-5p, which targeted TNF and regulated MMP3 and NFκB p65 expression.

19.
J AAPOS ; 27(4): 231-233, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348674

RESUMO

We present an atypical case of progressive fixed hypertropia in a patient with extreme myopia. Myopic strabismus fixus is typically characterized by progressive esotropia and hypotropia, which is caused by the protrusion of the posterior eyeball from the superotemporal quadrant of the extraocular muscle cone. In this case, the patient's right eye was fixed in a superomedial position, and the left eye was fixed and deviated upward. Magnetic resonance imaging revealed protrusion of a posterior scleral staphyloma inferotemporally in each eye. This case illustrates how the pattern of strabismus fixus caused by high myopia depends on the direction of the protrusion of the posterior pole and the resulting displacement of extraocular muscle paths.


Assuntos
Esotropia , Miopia , Estrabismo , Humanos , Estrabismo/cirurgia , Estrabismo/complicações , Órbita , Miopia/complicações , Esotropia/diagnóstico , Esotropia/etiologia , Esotropia/cirurgia , Músculos Oculomotores/diagnóstico por imagem , Músculos Oculomotores/cirurgia , Músculos Oculomotores/patologia , Imageamento por Ressonância Magnética , Células Fotorreceptoras Retinianas Cones
20.
CNS Neurosci Ther ; 29(11): 3612-3623, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37269080

RESUMO

AIM: Blood-brain barrier (BBB) dysfunction is one of the hallmarks of ischemic stroke. USP14 has been reported to play a detrimental role in ischemic brain injury. However, the role of USP14 in BBB dysfunction after ischemic stroke is unclear. METHODS: In this study, we tested the role of USP14 in disrupting BBB integrity after ischemic stroke. The USP14-specific inhibitor IU1 was injected into middle cerebral artery occlusion (MCAO) mice once a day. The Evans blue (EB) assay and IgG staining were used to assess BBB leakage 3 days after MCAO. FITC-detran test was slected to examine the BBB leakage in vitro. Behavior tests were conducted to evaluate recovery from ischemic stroke. RESULTS: Middle cerebral artery occlusion increased endothelial cell USP14 expression in the brain. Furthermore, the EB assay and IgG staining showed that USP14 inhibition through IU1 injection protected against BBB leakage after MCAO. Analysis of protein expression revealed a reduction in the inflammatory response and chemokine release after IU1 treatment. In addition, IU1 treatment was found to rescue neuronal loss resulting from ischemic stroke. Behavior tests showed a positive effect of IU1 in attenuating brain injury and improving motor function recovery. In vitro study showed that IU1 treatment could alleviate endothelial cell leakage induced by OGD in cultured bend.3 cells through modulating ZO-1 expression. CONCLUSIONS: Our results demonstrate a role for USP14 in disrupting the integrity of the BBB and promoting neuroinflammation after MCAO.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Azul Evans/farmacologia , Imunoglobulina G , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA