RESUMO
Graphitic carbon nitride (CN) has garnered considerable attention in the field of visible-light CO2 photoreduction, but its efficiency remains limited by the intrinsic π-conjugated skeleton. Here, O and S were co-doped CN (O, S/CN) by a facile "hydrolysis + calcination" approach to modulate the physicochemical and electronic structure. Distinctive from S doped CN (SCN), O, S/CN owned porous layer structure with several nanosheets and less SO42- groups on the surface. The amount of heteroatom-doping was achieved by changing the hydrothermal temperature. The optimum O, S/CN-80 achieved moderate CO production rate of 1.29 µmol g-1h-1, which was 3.79 times as much as SCN (0.34 µmol g-1h-1). The O and most S atoms were substitutionally doped and the effect of S doped state on the improved efficiency of CO generation in O, S/CN was also explored based on the theoretical calculations. This work provides an inspiration to develop efficient dual-doped CN photocatalysts for photocatalytic CO2 reduction.
RESUMO
The interlayer strategy has emerged as an effective approach for modulating the interfacial polymerization process and improving the permeability and selectivity of polyamide membranes. However, the underlying mechanisms by which charged interlayers influence the interfacial polymerization process remain inadequately understood. In this study, we utilized two distinct charged cellulose nanofibers, namely, carboxylated cellulose (â-CNF) and quaternized cellulose ([Formula: see text]-CNF), as interlayers to regulate the interfacial polymerization process. Through simulation results, isothermal titration calorimetry (ITC) and UV tests, we demonstrated that the [Formula: see text]-CNF interlayer, which possesses stronger hydration capability and better piperazine affinity, enhanced the diffusion of piperazine across the reaction interface compared with the â-CNF interlayer. This led to an acceleration of the interfacial polymerization process and the formation of a denser membrane structure. Further investigation revealed that the charged interlayers significantly influenced the surface charging properties of the resulting nanofiltration membranes within a 30 nm range of electrostatic effects. Specifically, the â-CNF interlayer conferred a higher negative charge to the membrane surface, while the [Formula: see text]-CNF interlayer endowed the membranes with a lower surface negative charge. Leveraging these differences, the â-i-TFC membranes exhibited exceptional separation performance for divalent anions, achieving a SO42-/Cl- selectivity of 136. Conversely, the [Formula: see text]-i-TFC membrane demonstrated an enhanced separation of divalent cations, displaying a Mg2+/Na+ selectivity of 3.5. This study lays the groundwork for regulating the surface charging properties of polyamide membranes, offering potential advancements in nanofiltration applications.
RESUMO
Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmentosum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2 are putative drivers in around 10% of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its pathogenic role in genome instability remain poorly understood. We first demonstrated that mutant ERCC2 is an independent predictor of prognosis in BLCA. We then examined its impact on the somatic mutational landscape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrichment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which may be useful to inform treatment of patients with BLCA.
Assuntos
Mutação , Neoplasias da Bexiga Urinária , Proteína Grupo D do Xeroderma Pigmentoso , Humanos , Neoplasias da Bexiga Urinária/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , PrognósticoRESUMO
Waterborne polyurethane asphalt emulsion (WPUA) is an environmentally friendly bituminous material, whose performance is highly dependent on the phase structure of the continuous phase. In this paper, WPUAs in the vicinity of phase inversion were prepared using waterborne polyurethane (WPU) and asphalt emulsion. The chemical structures, thermal stability, dynamic mechanical properties, phase-separated morphology and mechanical performance of WPUAs were studied. Fourier-transform infrared (FTIR) spectra revealed that there are no -NCO bonds in either the pure WPU or WPUAs. Moreover, the preparation of WPUA is a physical process. The addition of WPU weakens the thermal stability of asphalt emulsion. WPU improves the storage modulus of asphalt emulsion at lower and higher temperatures. The glass transition temperatures of the WPUA films are higher than that of the pure WPU film. When the WPU concentration increases from 30 wt% to 40 wt%, phase inversion occurs; that is, the continuous phase shifts from asphalt to WPU. The WPUA films have lower tensile strength and toughness than the pure WPU film. However, the elongations at break of the WPUA films are higher than that of the pure WPU film. Both the tensile strength and toughness of the WPUA films increase with the WPU concentration. Due to the occurrence of phase inversion, the elongation at break, tensile strength and toughness of the WPUA film containing 30 wt% WPU are increased by 29%, 250% and 369%, respectively, compared to the film with 40 wt% WPU.
RESUMO
The performance and phase-separated microstructures of epoxy asphalt binders greatly depend on the concentration of epoxy resin or bitumen. In this paper, the effect of the epoxy resin (ER) concentration (10-90%) on the viscosity, thermo-mechanical properties, and phase-separated morphology of warm-mix epoxy asphalt binders (WEABs) was investigated using the Brookfield rotational viscometer, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and laser scanning confocal microscopy (LSCM). Due to the high reactivity of epoxy resin, the viscosity of WEABs increases with time. Furthermore, the initial viscosity of WEABs decreases with the ER concentration. Depending on the ER concentration, the viscosity-time behavior of WEABs is divided into three stages: slow (10-40%), fast (50-80%), and extremely slow (90%). In the slow stage, the viscosity slightly increases with the ER concentration, while the fast stage shows an opposite trend. DSC and DMA results reveal that WEABs with 10-80% ER exhibit two glass transition temperatures (Tgs) for cured epoxy resin and bitumen. Moreover, the Tgs of epoxy resin and bitumen increase with the ER concentration. However, WEAB with 90 % ER has only one Tg. LSCM observation shows that phase separation occurs in all WEABs. For WEABs containing 10-40% ER, spherical epoxy particles act as the discontinuous phase and disperse in the continuous bitumen phase. However, in WEABs with 50-90% ER, phase inversion takes place. Contrarily, bitumen particles disperse in the continuous epoxy phase. The damping properties of WEABs with the continuous epoxy phases increase with the ER concentration, while the crosslinking density shows an opposite trend. The occurrence of phase inversion results in a sharp increase in the tensile strength of WEABs. For WEABs with the continuous epoxy phases, the elongation at break increases with the ER concentration. The toughness first increases and then decreases with the ER concentration. A maximum toughness value shows at 70% ER.
RESUMO
Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m2·h·bar while still maintaining ~96% Na2SO4 rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.
RESUMO
Designing nanocomposite hydrogels with oriented nanosheets has emerged as a promising toolkit to achieve preferential performances that go beyond their disordered counterparts. Although current fabrication strategies via electric/magnetic force fields have made remarkable achievements, they necessitate special properties of nanosheets and suffer from an inferior orientation degree of nanosheets. Herein, a facile and universal approach is discovered to elaborate MXene-based nanocomposite hydrogels with highly oriented, heterogeneous architecture by virtue of supergravity to replace conventional force fields. The key to such architecture is to leverage bidirectional, force-tunable attributes of supergravity containing coupled orthogonal shear and centrifugal force field for steering high-efficient movement, pre-orientation, and stacking of MXene nanosheets in the bottom. Such a synergetic effect allows for yielding heterogeneous nanocomposite hydrogels with a high-orientation MXene-rich layer (orientation degree, f = 0.83) and a polymer-rich layer. The authors demonstrate that MXene-based nanocomposite hydrogels leverage their high-orientation, heterogeneous architecture to deliver an extraordinary electromagnetic interference shielding effectiveness of 55.2 dB at 12.4 GHz yet using a super-low MXene of 0.3 wt%, surpassing most hydrogels-based electromagnetic shielding materials. This versatile supergravity-steered strategy can be further extended to arbitrary nanosheets including MoS2, GO, and C3N4, offering a paradigm in the development of oriented nanocomposites.
RESUMO
Fine design of surface charge properties of polyamide membranes is crucial for selective ionic and molecular sieving. Traditional membranes face limitations due to their inherent negative charge and limited charge modification range. Herein, we report a facile ionic liquid-decoupled bulk/interfacial diffusion strategy to elaborate the double charge flips of polyamide membranes, enabling on-demand transformation from inherently negative to highly positive and near-neutral charges. The key to these flips lies in the meticulous utilization of ionic liquid that decouples intertwined bulk/interfacial diffusion, enhancing interfacial while inhibiting bulk diffusion. These charge-tunable polyamide membranes can be customized for impressive separation performance, for example, profound Cl-/SO42- selectivity above 470 in sulfate recovery, ultrahigh Li+/Mg2+ selectivity up to 68 in lithium extraction, and effective divalent ion removal in pharmaceutical purification, surpassing many reported polyamide nanofiltration membranes. This advancement adds a new dimension to in the design of advanced polymer membranes via interfacial polymerization.
RESUMO
It is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance. HABD quantifies the number of distinct amide bonds per unit mass of polyamide, based on a comprehensive segmentation of polyamide structure and consistent computational protocols derived from X-ray photoelectron spectroscopy data. Compared to its counterpart, HABD overcomes the limitations and offers a more accurate depiction of the crosslinked networks. Empirical data validate that HABD exhibits the expected correlation with the salt rejection and water permeance of reverse osmosis and nanofiltration polyamide membranes. Notably, HABD is applicable for analyzing complex crosslinked polyamide networks formed by highly functional monomers. By offering a powerful toolbox for systematic analysis of crosslinked polyamide networks, HABD facilitates the development of permselective membranes with enhanced performance in desalination applications.
RESUMO
By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.
Assuntos
Fibroínas , Nanofibras , Ratos , Animais , Fibroínas/farmacologia , Fibroínas/química , Osteogênese , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Nanofibras/química , Biomimética , Regeneração Óssea , Seda/químicaRESUMO
Salt scaling poses a significant obstacle to the practical implementation of solar-driven evaporation for desalination. Attempts to mitigate scaling by enhancing mass transfer often lead to a compromise in evaporation efficiency due to associated heat loss. In the present work, a novel seesaw evaporator with a Janus structure to harness scaling for periodic self-descaling is reported. The seesaw evaporators are facilely fabricated by delignifying balsa wood and subsequently single-sided spray-coating it with soot and polydimethylsiloxane (PDMS). This unique Janus structure enables the evaporator to float on the brine while ensuring an ample supply of solution for evaporation. During evaporation, salt ions are transported directionally toward the cocked end of the evaporator to form scaling, triggering the seesaw evaporator to flip once a threshold is reached. The accumulated salts re-dissolve back into the solution. By adjusting the tilt angle, the evaporator can achieve an impressive evaporation rate of up to 2.65 kg m-2 h-1 when evaporating an 8 wt.% NaCl solution. Remarkably, these evaporators maintain a stable evaporation rate during prolonged 120 h operation and produce ≈3.93-6.35 L mâ»2·day⻹ of freshwater from simulated brines when assembled into an evaporation device.
RESUMO
Supported ionic liquid membranes (SILMs), owing to their capacities in harnessing physicochemical properties of ionic liquid for exceptional CO2 solubility, have emerged as a promising platform for CO2 extraction. Despite great achievements, existing SILMs suffer from poor structural and performance stability under high-pressure or long-term operations, significantly limiting their applications. Herein, a one-step and in situ interfacial polymerization strategy is proposed to elaborate a thin, mechanically-robust, and highly-permeable polyamide armor on the SILMs to effectively protect ionic liquid within porous supports, allowing for intensifying the overall stability of SILMs without compromising CO2 separation performance. The armored SILMs have a profound increase of breakthrough pressure by 105% compared to conventional counterparts without armor, and display high and stable operating pressure exceeding that of most SILMs previously reported. It is further demonstrated that the armored SILMs exhibit ultrahigh ideal CO2/N2 selectivity of about 200 and excellent CO2 permeation of 78 barrers upon over 150 h operation, as opposed to the full failure of CO2 separation performance within 36 h using conventional SILMs. The design concept of armor provides a flexible and additional dimension in developing high-performance and durable SILMs, pushing the practical application of ionic liquids in separation processes.
RESUMO
Extracting lithium from seawater has emerged as a disruptive platform to resolve the issue of an ever-growing lithium shortage. However, achieving highly efficient and durable lithium extraction from seawater in an energy-efficient manner is challenging, as imposed by the low concentration of lithium ions (Li+) and high concentration of interfering ions in seawater. Here, we report a facile and universal strategy to develop photothermal "ion pumps" (PIPs) that allow achieving energy-efficient, augmented, and durable lithium extraction from seawater under sunlight. The key design of PIPs lies in the function fusion and spatial configuration manipulation of a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell for governing gravity-driven water flow and solar-driven water evaporation. Such a synergetic effect allows PIPs to achieve spontaneous, continuous, and augmented Li+ replenishment-diffusion-enrichment, as well as circumvent the impact of concentration polarization and scaling of interfering ions. We demonstrate that our PIPs exhibit dramatic enhancement in Li+ trapping rate and outstanding Li+ separation factor yet have ultralow energy consumption. Moreover, our PIPs deliver ultrastable Li+ trapping performance without scaling even under high-concentration interfering ions for 140 h operation, as opposed to the significant decrease of nearly 55.6% in conventional photothermal configuration. The design concept and material toolkit developed in this work can also find applications in extracting high-value-added resources from seawater and beyond.
RESUMO
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
RESUMO
We present a novel approach to fabricate endogenous slippery lubricant-infused porous surfaces (eSLIPS) at room temperature using an evaporation-induced phase separation process. The ternary coating system, comprising ethylene-propylene copolymer, caprylyl methicone, and n-hexane, forms a porous structure in situ infiltrated with lubricant, resulting in surfaces with remarkable anti-fouling and anti-icing properties.
RESUMO
Hydrogels, water-saturated polymer networks find widespread use in soft robotics, biomedical, pharmaceutical and food industries. Both solid and water constituents of hydrogels are sensitive to external stimuli such as temperature, humidity, osmolarity, and light. For instance, common hydrogels swell or shrink in the presence of chemical potential gradient between the sample and surrounding environment. Corresponding changes in internal water content lead to significant changes in mechanical properties of hydrogels. Besides, internal stresses build up if the gel samples are constrained during swelling or dehydration. In the present research, we utilize modal analyses technique on drying hydrogels to identify dehydration-induced changes in elastic moduli and internal stresses. In particular, natural frequencies and damping ratios of the first two axisymmetric transverse vibration modes are measured on clamped gelatin disks using non-contact laser vibrometry at various water loss states. Experimental modal frequencies are then compared to the predictions of a pre-stressed thick plate model. The evolutions of elastic moduli and internal stresses for water losses up to 80% are identified. The broadband loss capacity of gelatin is also determined from the measured modal damping ratios. Highly transient mechanical response observed on the gelatin disks further demonstrates the need for non-contact and rapid mechanical characterization of hydrogels. As illustrated in this work, vibration and wave-based techniques are promising candidates to fulfill that need.
RESUMO
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
RESUMO
Directional sweat-wicking by Janus fabrics has gained substantial attention in promoting personal wet-thermal management for optimal human comfort. During intense physical exercise, excessive sweating can cause the flooding of fabrics and weaken their wicking capabilities once the inner capillary channels are saturated. To address this issue, we develop a photothermal Janus fabric through a facile polydopamine (PDA) deposition followed by single-sided spray-coating of hydrophobic polydimethylsiloxane (PDMS). Such innovative fabrics enable directional sweat-wicking through a Janus structure and persistent removal of excessive sweat by solar-powered evaporation. Under sunlight, our photothermal Janus fabrics exhibit an enhanced evaporation rate, approximately twice compared with that of conventional Janus fabrics (â¼1.143 ± 0.027 kg m-2h-1), making them suitable for high sweating rates during vigorous exercise. Furthermore, these fabrics help to maintain the skin temperature within the normal range, preventing hypothermia caused by profuse sweating. In addition, our photothermal Janus fabrics exhibit excellent washing durability even after multiple washing cycles, ensuring prolonged performance and safety.
Assuntos
Suor , Sudorese , Humanos , Ação Capilar , Interações Hidrofóbicas e HidrofílicasRESUMO
To avoid infection and other risks caused by large open-surgery incisions using scaffold transplants, it is very important to study injectable microcarrier-loaded cells for targeted therapy and tissue regeneration. In this study, on the one hand, to simulate the hierarchical structure of the extracellular matrix and carry cells, poly(L-lactic acid) (PLLA) nanofibrous microspheres (large microspheres) were initially fabricated as cell carriers. On the other hand, to precisely deliver cells through a magnetic field and promote stem cell differentiation, drug-loaded mesoporous Fe3O4@SiO2 microspheres (small microspheres) were prepared and coated on the surface PLLA nanofibrous microspheres. The coating conditions were systematically studied and optimized. The results showed that planetary-satellite-like cell carriers were successfully prepared and the carriers were capable of freely translocating under the influence of a magnetic field. It has been demonstrated in vitro experiments that the carriers are biocompatible and are capable of acting as drug carriers. Specifically, they were able to load and release cells in response to magnetic fields. In vivo experiments indicated that the carriers could successfully load and release GFP-labelled cells in nude mice. The study presented in this paper provides a versatile and promising platform for the cell-based therapy in tissue engineering and regenerative medicine.
Assuntos
Nanofibras , Dióxido de Silício , Camundongos , Animais , Microesferas , Dióxido de Silício/química , Nanofibras/química , Camundongos Nus , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fenômenos MagnéticosRESUMO
The application of hydrogel coatings to surface-modified metallic materials has gained considerable attention in engineering practice such as water-oil separation. However, the low coating adhesion and poor coating stability restrict its application. In this study, to obtain special wettability and durable filter materials, polyacrylamide (PAM)/sodium alginate (SA) xerogel particles were first prepared and adhered to a stainless steel screen by using an epoxy resin as a linker. Subsequently, the xerogel particles of the screen rehydrates in water to form a PAM-SA double-network hydrogel. The results show that the screen modified by PAM-SA xerogel of 20-30 µm particle size and a linker concentration of 0.1 g/mL resulted in a chimeric structure and subsequently transformed a uniform double-network hydrogel coating in water. According to the experimental results, the rough hydrogel coating exhibits superhydrophilicity and superoleophobicity under water; in particular, it has excellent wear resistance as well as physical and chemical stability. Under gravity-driven action, the PAM-SA-modified screen demonstrates high separation efficiency values of up to 99% in separating a wide range of oil/water mixtures and maintaining a water flux of (2-6) × 104 L·m-2·h-1. There was no significant reduction in efficiency of separation and water flux after 10 cycles, indicating that the PAM-SA-modified screen is capable of offering outstanding separation performance and durability. Moreover, the hydrogel-modified screen demonstrated corrosion and swelling resistance in some extreme environments, paving a way for practical applications in water treatment. The novel hydrogel-coating-modified screen with ease of preparation holds great promise for oil/water separation and other engineering applications.