Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5197, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890294

RESUMO

Untethered miniature soft robots have significant application potentials in biomedical and industrial fields due to their space accessibility and safe human interaction. However, the lack of selective and forceful actuation is still challenging in revolutionizing and unleashing their versatility. Here, we propose a focused ultrasound-controlled phase transition strategy for achieving millimeter-level spatially selective actuation and Newton-level force of soft robots, which harnesses ultrasound-induced heating to trigger the phase transition inside the robot, enabling powerful actuation through inflation. The millimeter-level spatial resolution empowers single robot to perform multiple tasks according to specific requirements. As a concept-of-demonstration, we designed soft robot for liquid cargo delivery and biopsy robot for tissue acquisition and patching. Additionally, an autonomous control system is integrated with ultrasound imaging to enable automatic acoustic field alignment and control. The proposed method advances the spatiotemporal response capability of untethered miniature soft robots, holding promise for broadening their versatility and adaptability.


Assuntos
Robótica , Robótica/instrumentação , Robótica/métodos , Desenho de Equipamento , Humanos , Ondas Ultrassônicas , Transição de Fase , Ultrassonografia/métodos , Ultrassonografia/instrumentação
2.
Sci Adv ; 10(5): eadk8970, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295172

RESUMO

Micro/nanorobots provide a promising approach for intravascular therapy with high precision. However, blood vessel is a highly complex system, and performing interventional therapy in those submillimeter segments remains challenging. While micro/nanorobots can enter submillimeter segments, they may still comprise nonbiodegradable parts, posing a considerable challenge for post-use removal. Here, we developed a retrievable magnetic colloidal microswarm, composed of tPA-anchored Fe3O4@mSiO2 nanorobots (tPA-nbots), to archive tPA-mediated thrombolysis under balloon catheter-assisted magnetic actuation with x-ray fluoroscopy imaging system (CMAFIS). By deploying tPA-nbot transcatheter to the vicinity of the thrombus, the tPA-nbot microswarms were magnetically actuated to the blood clot at the submillimeter vessels with high precision. After thrombolysis, the tPA-nbots can be retrieved via the CMAFIS, as demonstrated in ex vivo organ of human placenta and in vivo carotid artery of rabbit. The proposed colloidal microswarm provides a promising robotic tool with high spatial precision for enhanced thrombolysis with low side effects.


Assuntos
Artérias , Ativador de Plasminogênio Tecidual , Animais , Humanos , Coelhos , Ativador de Plasminogênio Tecidual/uso terapêutico
3.
Sci Adv ; 9(50): eadj0883, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100592

RESUMO

The magnetic microrobots promise benefits in minimally invasive cell-based therapy. However, they generally suffer from an inevitable compromise between their magnetic responsiveness and biomedical functions. Herein, we report a modularized microrobot consisting of magnetic actuation (MA) and cell scaffold (CS) modules. The MA module with strong magnetism and pH-responsive deformability and the CS module with cell loading-release capabilities were fabricated by three-dimensional printing technique. Subsequently, assembly of modules was performed by designing a shaft-hole structure and customizing their relative dimensions, which enabled magnetic navigation in complex environments, while not deteriorating the cellular functionalities. On-demand disassembly at targeted lesion was then realized to facilitate CS module delivery and retrieval of the MA module. Furthermore, the feasibility of proposed system was validated in an in vivo rabbit bile duct. Therefore, this work presents a modular design-based strategy that enables uncompromised fabrication of multifunctional microrobots and stimulates their development for future cell-based therapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Sistemas de Liberação de Medicamentos , Animais , Coelhos , Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional
4.
Sci Adv ; 9(19): eadf9278, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172097

RESUMO

The recent rise of swarming microrobotics offers great promise in the revolution of minimally invasive embolization procedure for treating aneurysm. However, targeted embolization treatment of aneurysm using microrobots has significant challenges in the delivery capability and filling controllability. Here, we develop an interventional catheterization-integrated swarming microrobotic platform for aneurysm on-demand embolization in physiological blood flow. A pH-responsive self-healing hydrogel doped with magnetic and imaging agents is developed as the embolic microgels, which enables long-term self-adhesion under biological condition in a controllable manner. The embolization strategy is initiated by catheter-assisted deployment of swarming microgels, followed by the application of external magnetic field for targeted aggregation of microrobots into aneurysm sac under the real-time guidance of ultrasound and fluoroscopy imaging. Mild acidic stimulus is applied to trigger the welding of microgels with satisfactory bio-/hemocompatibility and physical stability and realize complete embolization. Our work presents a promising connection between the design and control of microrobotic swarms toward practical applications in dynamic environments.


Assuntos
Aneurisma , Embolização Terapêutica , Microgéis , Humanos , Cimentos de Resina , Hemodinâmica , Aneurisma/terapia , Embolização Terapêutica/métodos
5.
Proc Int Jt Conf Neural Netw ; : 1-8, 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-39301483

RESUMO

Mutual knowledge distillation (MKD) is a technique used to transfer knowledge between multiple models in a collaborative manner. However, it is important to note that not all knowledge is accurate or reliable, particularly under challenging conditions such as label noise, which can lead to models that memorize undesired information. This problem can be addressed by improving the reliability of the knowledge source, as well as selectively selecting reliable knowledge for distillation. While making a model more reliable is a widely studied topic, selective MKD has received less attention. To address this, we propose a new framework called selective mutual knowledge distillation (SMKD). The key component of SMKD is a generic knowledge selection formulation, which allows for either static or progressive selection thresholds. Additionally, SMKD covers two special cases: using no knowledge and using all knowledge, resulting in a unified MKD framework. We present extensive experimental results to demonstrate the effectiveness of SMKD and justify its design.

6.
Sci Adv ; 8(40): eabq8573, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206344

RESUMO

Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling Fe2O3 helical micromachine (HMM) with peroxidase-mimicking activity. Different from the ideal corkscrew motion, the Fe2O3 HMM applies a wobbling motion in the tube, inducing stronger mechanical force and fluid convections, which not only damages the biofilm occlusion into debris quickly but also enhances the catalytic generation and diffusion of reactive oxygen species (ROS) for killing bacteria cells. Moreover, the treatment procedure, which integrated the delivery, actuation, and retrieval of Fe2O3 HMM, was validated in the T-tube implanted in a human cadaver ex vivo. It enables the visual operation with ease and is gentle to the tympanic membrane and ossicles, which is promising in the clinical application.

7.
AoB Plants ; 14(2): plac004, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35273787

RESUMO

The evolution of persistent calyces may be an adaptation to ensure reproductive success of certain flowering plants. However, experimental evidence of the functions of persistent calyces during flowering and seed development remains scarce. We explored the possible functions of persistent calyces in Salvia miltiorrhiza, a perennial herb with campanulate calyx. We conducted calyx manipulation experiments to examine whether persistent calyces affect visitation rates of nectar robbers and pollinators, individual flower longevity, fruit set, seed set and seed mass. Our findings suggested that shortening of the calyx significantly decreased individual flower longevity, fruit set and seed mass, but did not affect visitation of pollinators and nectar robbers. In addition, the seed set of control flowers and the flowers with calyx shortened at the beginning of fruiting stage (CSF flowers) did not significantly differ, but both were higher than that of the flowers with calyx shortened at the beginning of blooming stage (CSB flowers). The seed set and fruit set of CSB flowers were limited by pollination due to the reduction in floral longevity. We conclude that persistent calyces of S. miltiorrhiza may represent adaptive strategies to maintain floral longevity and increase plant fitness. Persistent calyces may provide protection for the growth of flowers and contribute resources to the development of fruits and seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA