Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Med ; 30(1): 177-185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182783

RESUMO

Freezing of gait (FoG) is a profoundly disruptive gait disturbance in Parkinson's disease, causing unintended stops while walking. Therapies for FoG reveal modest and transient effects, resulting in a lack of effective treatments. Here we show proof of concept that FoG can be averted using soft robotic apparel that augments hip flexion. The wearable garment uses cable-driven actuators and sensors, generating assistive moments in concert with biological muscles. In this n-of-1 trial with five repeated measurements spanning 6 months, a 73-year-old male with Parkinson's disease and substantial FoG demonstrated a robust response to robotic apparel. With assistance, FoG was instantaneously eliminated during indoor walking (0% versus 39 ± 16% time spent freezing when unassisted), accompanied by 49 ± 11 m (+55%) farther walking compared to unassisted walking, faster speeds (+0.18 m s-1) and improved gait quality (-25% in gait variability). FoG-targeting effects were repeatable across multiple days, provoking conditions and environment contexts, demonstrating potential for community use. This study demonstrated that FoG was averted using soft robotic apparel in an individual with Parkinson's disease, serving as an impetus for technological advancements in response to this serious yet unmet need.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Robótica , Masculino , Humanos , Idoso , Doença de Parkinson/complicações , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Caminhada/fisiologia
2.
Exp Mol Med ; 55(1): 95-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599932

RESUMO

Aberrant adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on double-stranded RNA (ADAR), has been implicated in various cancers, but the mechanisms by which microRNA (miRNA) editing contributes to cancer development are largely unknown. Our multistage hepatocellular carcinogenesis transcriptome data analyses, together with publicly available data, indicated that ADAR1 was the most profoundly dysregulated gene among RNA-editing enzyme family members in liver cancer. Targeted inactivation of ADAR1 inhibited the in vitro tumorigenesis of liver cancer cells. An integrative computational analyses of RNA-edited hotspots and the known editing frequency of miRNAs suggested that the miRNA miR-3144-3p was edited by ADAR1 during liver cancer progression. Specifically, ADAR1 promoted A-to-I editing of canonical miR-3144-3p to replace the adenosine at Position 3 in the seed region with a guanine (ED_miR-3144-3p(3_A < G)) in liver cancer cells. We then demonstrated that Musashi RNA-binding protein 2 (MSI2) was a specific target of miR-3144-3p and that MSI2 overexpression was due to excessive ADAR1-dependent over-editing of canonical miR-3144-3p in liver cancer. In addition, target prediction analyses and validation experiments identified solute carrier family 38 member 4 (SLC38A4) as a specific gene target of ED_miR-3144-3p(3_A < G). The ectopic expression of both ADAR1 and the ED_miR-3144-3p(3_A < G) mimic enhanced mitotic activities, and ADAR1 suppressed SLC38A4 expression in liver cancer cells. Treatments with mouse-specific ADAR1-, MSI2-siRNA-, or SLC38A4-expressing plasmids suppressed tumorigenesis and tumor growth in a mouse model of spontaneous liver cancer. Our findings suggest that the aberrant regulation of ADAR1 augments oncogenic MSI2 effects by excessively editing canonical miR-3144-3p and that the resultant ED_miR-3144-3p(3_A < G) simultaneously suppresses tumor suppressor SLC38A4 expression, contributing to hepatocellular carcinogenesis.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Exp Mol Med ; 54(6): 812-824, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729324

RESUMO

MicroRNA (miRNA) processing is a critical step in mature miRNA production. Its dysregulation leads to an increase in miRNA isoforms with heterogenous 5'-ends (isomiRs), which can recognize distinct target sites because of their shifted seed sequence. Although some miRNA genes display productive expression of their 5'-isomiRs in cancers, how their production is controlled and how 5'-isomiRs affect tumor progression have yet to be explored. In this study, based on integrative analyses of high-throughput sequencing data produced by our group and publicly available data, we demonstrate that primary miR-21 (pri-miR-21) is processed into the cancer-specific isomiR isomiR-21-5p | ±1, which suppresses growth hormone receptor (GHR) in liver cancer. Treatment with antagomirs against isomiR-21-5p | ±1 inhibited the in vitro tumorigenesis of liver cancer cells and allowed the recovery of GHR, whereas the introduction of isomiR-21-5p | ±1 mimics attenuated these effects. These effects were validated in a mouse model of spontaneous liver cancer. Heterogeneous nuclear ribonucleoprotein C and U2 small nuclear RNA auxiliary factor 2 were predicted to bind upstream of pre-miR-21 via a poly-(U) motif and influence Drosha processing to induce the production of isomiR-21-5p | ±1. Our findings suggest an oncogenic function for the non-canonical isomiR-21-5p | ±1 in liver cancer, and its production was shown to be regulated by hnRNPC.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo C , MicroRNAs , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Isoformas de Proteínas , Processamento Pós-Transcricional do RNA
4.
J Clin Med ; 11(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456219

RESUMO

The high morbidity rate of hepatocellular carcinoma (HCC) is mainly linked to late diagnosis. Early diagnosis of this leading cause of mortality is therefore extremely important. We designed a gene selection strategy to identify potential secretory proteins by predicting signal peptide cleavage sites in amino acid sequences derived from transcriptome data of human multistage HCC comprising chronic hepatitis, liver cirrhosis and early and overt HCCs. The gene selection process was validated by the detection of molecules in the serum of HCC patients. From the computational approaches, 10 gene elements were suggested as potent candidate secretory markers for detecting HCC patients. ELISA testing of serum showed that hyaluronan mediated motility receptor (HMMR), neurexophilin 4 (NXPH4), paired like homeodomain 1 (PITX1) and thrombospondin 4 (THBS4) are early-stage HCC diagnostic markers with superior predictive capability in a large cohort of HCC patients. In the assessment of differential diagnostic accuracy, receiver operating characteristic curve analyses showed that HMMR and THBS4 were superior to α-fetoprotein (AFP) in diagnosing HCC, as evidenced by the high area under the curve, sensitivity, specificity, accuracy and other values. In addition, comparative analysis of all four markers and AFP combinations demonstrated that HMMR-PITX1-AFP and HMMR-NXPH4-PITX1 trios were the optimal combinations for reaching 100% accuracy in HCC diagnosis. Serum proteins HMMR, NXPH4, PITX1 and THBS4 can complement measurement of AFP in diagnosing HCC and improve identification of patients with AFP-negative HCC as well as discriminate HCC from non-malignant chronic liver disease.

5.
Oncogene ; 40(28): 4652-4662, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140644

RESUMO

SWItch/Sucrose Non-Fermentable (SWI/SNF) is a multiprotein complex essential for the regulation of eukaryotic gene expression. SWI/SNF complex genes are genetically altered in over 20% of human malignancies, but the aberrant regulation of the SWI/SNF subunit genes and subsequent dysfunction caused by abnormal expression of subunit gene in cancer, remain poorly understood. Among the SWI/SNF subunit genes, SMARCA4, SMARCC1, and SMARCA2 were identified to be overexpressed in human hepatocellular carcinoma (HCC). Modulation of SMARCA4, SMARCC1, and SMARCA2 inhibited in vitro tumorigenesis of HCC cells. However, SMARCA4-targeting elicited remarkable inhibition in an in vivo Ras-transgenic mouse HCC model (Ras-Tg), and high expression levels of SMARCA4 significantly associated with poor prognosis in HCC patients. Furthermore, most HCC patients (72-86%) showed SMARCA4 overexpression compared to healthy controls. To identify SMARCA4-specific active enhancers, mapping, and analysis of chromatin state in liver cancer cells were performed. Integrative analysis of SMARCA4-regulated genes and active chromatin enhancers suggested 37 genes that are strongly activated by SMARCA4 in HCC. Through chromatin immunoprecipitation-qPCR and luciferase assays, we demonstrated that SMARCA4 activates Interleukin-1 receptor-associated kinase 1 (IRAK1) expression through IRAK1 active enhancer in HCC. We then showed that transcriptional activation of IRAK1 induces oncoprotein Gankyrin and aldo-keto reductase family 1 member B10 (AKR1B10) in HCC. The regulatory mechanism of the SMARCA4-IRAK1-Gankyrin, AKR1B10 axis was further demonstrated in HCC cells and in vivo Ras-Tg mice. Our results suggest that aberrant overexpression of SMARCA4 causes SWI/SNF to promote IRAK1 enhancer to activate oncoprotein Gankyrin and AKR1B10, thereby contributing to hepatocarcinogenesis.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Oncogenes , Animais , Camundongos , Sequências Reguladoras de Ácido Nucleico
6.
Exp Mol Med ; 52(4): 582-593, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32346127

RESUMO

Recently, with the development of RNA sequencing technologies such as next-generation sequencing (NGS) for RNA, numerous variations of alternatively processed RNAs made by alternative splicing, RNA editing, alternative maturation of microRNA (miRNA), RNA methylation, and alternative polyadenylation have been uncovered. Furthermore, abnormally processed RNAs can cause a variety of diseases, including obesity, diabetes, Alzheimer's disease, and cancer. Especially in cancer development, aberrant RNAs caused by deregulated RNA modifiers or regulators are related to progression. Accumulating evidence has reported that aberrant RNAs promote carcinogenesis in many cancers, including liver cancer, leukemia, melanoma, lung cancer, breast cancer, and other cancers, in which abnormal RNA processing occurs in normal cells. Therefore, it is necessary to understand the precise roles and mechanisms of disease-related RNA processing in various cancers for the development of therapeutic interventions. In this review, the underlying mechanisms of variations in the RNA life cycle and the biological impacts of RNA variations on carcinogenesis will be discussed, and therapeutic strategies for the treatment of tumor malignancies will be provided. We also discuss emerging roles of RNA regulators in hepatocellular carcinogenesis.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Neoplasias/etiologia , Neoplasias/metabolismo , RNA/genética , Processamento Alternativo , Animais , Progressão da Doença , Humanos , Neoplasias/patologia , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
7.
Soft Robot ; 7(2): 218-232, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105568

RESUMO

We present a manufacturing process for creating centimeter-scale multichambered inflatable robots and structures that can include both soft and rigid components. Our process uses a thermoplastic polyurethane (TPU) adhesive film to bond together layers of textiles, plastics, or other materials. The structures are heated and compressed a few layers at a time with a heat press machine or bonded in an oven all at once. We present two methods for arranging textiles and thermal adhesive film to achieve airtight structures and perform modeling and measurements on the resulting inflatable chambers. We characterize the set of textiles and rigid materials that will work with this process, measuring how strongly the TPU film bonds with them. We also describe how to include corners, where several pieces of material come together at a point, and determine which corner constructions are airtight. We characterize how different seam widths behave, determine the maximum pressure chambers fabricated with this process can support, and determine the cycle life of actuators built with this process. Finally, we present an actuator with an embedded sensor and three examples of robots constructed with textiles and TPU film, including a hybrid soft/rigid robotic arm, a soft robot that can roll along the ground, and a robot that can climb inside tubes or other confined spaces.

8.
Hepatology ; 70(4): 1262-1279, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991448

RESUMO

Histone deacetylase 6 (HDAC6) uniquely serves as a tumor suppressor in hepatocellular carcinogenesis, but the underlying mechanisms leading to tumor suppression are not fully understood. To identify comprehensive microRNAs (miRNAs) regulated by HDAC6 in hepatocellular carcinogenesis, differential miRNA expression analysis of HDAC6-transfected Hep3B cells was performed. Using integrative analyses of publicly available transcriptome data and miRNA target prediction, we selected five candidate miRNAs and, through in vitro functional validation, showed that let-7i-5p specifically suppressed thrombospondin-1 (TSP1) in hepatocellular carcinoma (HCC). Ectopic expression of antisense let-7i-5p (AS-let-7i-5p) inhibited in vitro tumorigenesis of HCC cells. In addition, treatments of partially purified TSP1 from culture cell media (ppTSP1) and recombinant TSP1 (rTSP1) exhibited similar effects with AS-let-7i-5p treatment on the same HCC cells, whereas TSP1 neutralizing antibody treatment significantly attenuated these effects. Notably, treatments of HDAC6 plasmid, AS-let-7i-5p, ppTSP1, and rTSP1 significantly suppressed in vitro angiogenesis and metastatic potential of HCC cells, but the co-treatment of TSP1 antibody specific to cluster of differentiation 47 (CD47) binding domain successfully blocked these effects in the same cells. Furthermore, we demonstrated that recovery of HDAC6 elicited let-7i-5p suppression to de-repress TSP1 expression; therefore, it occupied the CD47 receptor to block CD47-SIRPα-mediated anti-phagocytosis of macrophage in HCC. We also observed that HCC-derived exosomal let-7i-5p suppressed TSP1 of recipient hepatocyte cells. Treatments of HDAC6 plasmid, AS-let-7i-5p, and rTSP1 suppressed tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. Conclusion: Our findings suggest that the HDAC6-let-7i-5p-TSP1 regulatory pathway suppresses neoplastic and antiphagocytic behaviors of HCC by interacting with cell surface receptor CD47 in HCC and neighboring cells of tumor microenvironment, providing a therapeutic target for the treatment of liver malignancy and metastasis.


Assuntos
Antígeno CD47/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Desacetilase 6 de Histona/genética , Neoplasias Hepáticas/genética , Trombospondina 1/metabolismo , Análise de Variância , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Fagocitose/genética , Distribuição Aleatória , Microambiente Tumoral/genética
9.
Exp Mol Med ; 50(1): e420, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303507

RESUMO

Recurrence and metastasis are major challenges in the management of hepatocellular carcinoma (HCC) patients after resection. To identify a metastasis-associated gene signature, we performed comparative gene expression analysis with recurrent HCC tissues from HCC patients who underwent partial or total hepatectomy and from non-metastatic primary HCC tissues. From this, we were able to identify genes associated with HCC recurrence. TCIRG1 (T-Cell Immune Regulator 1) was one of the aberrantly overexpressed genes in patients with recurrent HCC who had undergone total hepatectomy. The significant overexpression of TCIRG1 was confirmed using the Liver Hepatocellular Carcinoma dataset from The Cancer Genome Atlas. High expression of TCIRG1 was significantly associated with poor 5-year disease-free and recurrence-free survival of HCC patients. TCIRG1 knockdown suppressed tumor cell growth and proliferation in HCC cell lines; caused a significant increase in the proportion of cells in the G1/S phase of cell cycle; induced cell death; suppressed the metastatic potential of HCC cells by selectively regulating the epithelial-mesenchymal transition (EMT) regulatory proteins E-cadherin, N-cadherin, Fibronectin, Snail and Slug; and significantly attenuated the metastatic potential of ras-transformed NIH-3T3 cells in vitro and in vivo. These findings suggest that TCIRG1 functions as a metastatic enhancer by modulating growth, death and EMT in HCC cells. TCIRG1 could be a therapeutic target for the treatment of liver malignancy and metastasis.


Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/patologia , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/secundário , Masculino , Camundongos Nus , Recidiva Local de Neoplasia/genética , Prognóstico , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Front Robot AI ; 5: 136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33501014

RESUMO

We present a high-displacement pneumatic artificial muscle made of textiles or plastics that can include integrated electronics to sense its pressure and displacement. Compared to traditional pneumatic muscle actuators such as the McKibben actuator and other more recent soft actuators, the actuator described in this paper can produce a much higher (40~65%) contraction ratio. In this paper, we describe the design, fabrication, and evaluation of the actuator, as well as the manufacturing process used to create it. We demonstrate the actuator design with several examples that produce 120 and 300 N at pressures of 35 and 105 kPa, respectively, and have contraction ratios of 40-65%.

11.
J Pathol ; 244(1): 107-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28991363

RESUMO

MicroRNAs (miRNAs) engage in complex interactions with the machinery that controls the transcriptome and concurrently target multiple mRNAs. Here, we demonstrate that microRNA-495-3p (miR-495-3p) functions as a potent tumor suppressor by governing ten oncogenic epigenetic modifiers (EMs) in gastric carcinogenesis. From the large cohort transcriptome datasets of gastric cancer (GC) patients available from The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), we were able to recapitulate 15 EMs as significantly overexpressed in GC among the 51 EMs that were previously reported to be involved in cancer progression. Computational target prediction yielded miR-495-3p, which targets as many as ten of the 15 candidate oncogenic EMs. Ectopic expression of miRNA mimics in GC cells caused miR-495-3p to suppress ten EMs, and inhibited tumor cell growth and proliferation via caspase-dependent and caspase-independent cell death processing. In addition, in vitro metastasis assays showed that miR-495-3p plays a role in the metastatic behavior of GC cells by regulating SLUG, vimentin, and N-cadherin. Furthermore, treatment of GC cells with 5-aza-2'-deoxcytidine restored miR-495-3p expression; sequence analysis revealed hypermethylation of the miR-495-3p promoter region in GC cells. A negative regulatory loop is proposed, whereby DNMT1, among ten oncogenic EMs, regulates miR-495-3p expression via hypermethylation of the miR-495-3p promoter. Our findings suggest that the functional loss or suppression of miR-495-3p triggers overexpression of multiple oncogenic EMs, and thereby contributes to malignant transformation and growth of gastric epithelial cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Epigenômica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/patologia , Animais , Caderinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Metilação de DNA , Genes Reporter , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Estômago/patologia , Neoplasias Gástricas/genética
12.
Hepatology ; 67(4): 1360-1377, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059470

RESUMO

An accurate tool enabling early diagnosis of hepatocellular carcinoma (HCC) is clinically important, given that early detection of HCC markedly improves survival. We aimed to investigate the molecular markers underlying early progression of HCC that can be detected in precancerous lesions. We designed a gene selection strategy to identify potential driver genes by integrative analysis of transcriptome and clinicopathological data of human multistage HCC tissues, including precancerous lesions, low- and high-grade dysplastic nodules. The gene selection process was guided by detecting the selected molecules in both HCC and precancerous lesion. Using various computational approaches, we selected 10 gene elements as a candidate and, through immunohistochemical staining, showed that barrier to autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3), and splicing factor 3b subunit 4 (SF3B4) are HCC decision markers with superior capability to diagnose early-stage HCC in a large cohort of HCC patients, as compared to the currently popular trio of HCC diagnostic markers: glypican 3, glutamine synthetase, and heat-shock protein 70. Targeted inactivation of BANF1, PLOD3, and SF3B4 inhibits in vitro and in vivo liver tumorigenesis by selectively modulating epithelial-mesenchymal transition and cell-cycle proteins. Treatment of nanoparticles containing small-interfering RNAs of the three genes suppressed liver tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. We also demonstrated that SF3B4 overexpression triggers SF3b complex to splice tumor suppressor KLF4 transcript to nonfunctional skipped exon transcripts. This contributes to malignant transformation and growth of hepatocyte through transcriptional inactivation of p27Kip1 and simultaneously activation of Slug genes. CONCLUSION: The findings suggest molecular markers of BANF1, PLOD3, and SF3B4 indicating early-stage HCC in precancerous lesion, and also suggest drivers for understanding the development of hepatocarcinogenesis. (Hepatology 2018;67:1360-1377).


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Fatores de Processamento de RNA/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Ratos , Análise Serial de Tecidos/métodos
13.
Oncotarget ; 8(10): 16144-16157, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28147324

RESUMO

BACKGROUND: Early prognostication of neurological outcome in comatose patients after cardiac arrest (CA) is important for devising patient treatment strategies. However, there is still a lack of sensitive and specific biomarkers for easy identification of these patients. We evaluated whether molecular signatures from blood of CA patients might help to improve the prediction of neurological outcome. METHODS: We examined 22 comatose patients resuscitated after CA and obtained peripheral blood samples 48 hours after CA. To identify novel blood biomarkers, we aimed to measure neurological outcomes according to the Cerebral Performance Category (CPC) score at 6 months after CA and to determine blood transcriptome-based molecular signature of poor neurological outcome group. RESULTS: According to the CPC score, 10 patients exhibited a CPC score of one and 12 patients, a CPC score four to five. Blood transcriptomics revealed differently expressed profiles between the good outcome group and poor outcome group. A total of 150 genes were down-regulated and 237 genes were up-regulated in the poor neurological outcome group compared with good outcome group. From the blood transcriptome-based signatures, we identified that MAPK3, BCL2 and AKT1 were more specific and sensitive diagnostic biomarkers in poor neurological outcome with an area under the curve of 0.867 (p<0.0001), 0.800 (p=0.003), and 0.767 (p=0.016) respectively. CONCLUSIONS: We identify three biomarkers as potential predictors of neurological outcome following CA. Further assessment of the prognostic value of transcriptomic analysis in larger cohorts of CA patients is needed.


Assuntos
Coma/genética , Parada Cardíaca/complicações , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Biomarcadores/sangue , Análise por Conglomerados , Coma/sangue , Coma/etiologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/sangue , Avaliação de Resultados em Cuidados de Saúde , Valor Preditivo dos Testes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/sangue , Proteínas Proto-Oncogênicas c-bcl-2/sangue , Ressuscitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Oncotarget ; 7(10): 11412-23, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26863632

RESUMO

H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.


Assuntos
Carcinoma Hepatocelular/genética , Histonas/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Células Hep G2 , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Transfecção
15.
Nat Commun ; 7: 10600, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837457

RESUMO

Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m(-2) is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.

16.
J Hepatol ; 63(2): 408-19, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817558

RESUMO

BACKGROUND & AIMS: Most common reason behind changes in histone deacetylase (HDAC) function is its overexpression in cancer. However, among HDACs in liver cancer, HDAC6 is uniquely endowed with a tumor suppressor, but the mechanism underlying HDAC6 inactivation has yet to be uncovered. METHODS: Microarray profiling and target prediction programs were used to identify miRNAs targeting HDAC6. A series of inhibitors, activators and siRNAs was introduced to validate regulatory mechanisms for microRNA-221-3p (miR-221) governing HDAC6 in hepatocarcinogenesis. RESULTS: Comprehensive miRNA profiling analysis identified seven putative endogenous miRNAs that are significantly upregulated in hepatocellular carcinoma (HCC). While miR-221 was identified as a suppressor of HDAC6 by ectopic expression of miRNA mimics in Dicer knockdown cells, targeted-disruption of miR-221 repressed cancer cell growth through derepressing HDAC6 expression. Suppression of HDAC6 via miR-221 was induced by JNK/c-Jun signaling in liver cancer cells but not in normal hepatic cells. Additionally, cytokine-induced NF-κBp65 independently regulated miR-221, thereby suppressing HDAC6 expression in HCC cells. HCC tissues derived from chemical-induced rat and H-ras12V transgenic mice liver cancer models validated that JNK/c-Jun activation and NF-κBp65 nuclear translocation are essential for the transcription of miR-221 leading to repression of HDAC6 in HCC. CONCLUSIONS: Our findings suggest that the functional loss or suppression of the tumor suppressor HDAC6 is caused by induction of miR-221 through coordinated JNK/c-Jun- and NF-κB-signaling pathways during liver tumorigenesis, providing a novel target for the molecular treatment of liver malignancies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/genética , Neoplasias Hepáticas Experimentais/genética , MicroRNAs/genética , RNA Neoplásico/genética , Animais , Progressão da Doença , Desacetilase 6 de Histona , Histona Desacetilases/biossíntese , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , Reação em Cadeia da Polimerase , Ratos
17.
Oncotarget ; 6(10): 8089-102, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25797269

RESUMO

MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human cancers and altered expression of miR-31 has been detected in a large variety of tumor types, but the functional role of miR-31 still hold both tumor suppressive and oncogenic roles in different tumor types. MiR-31 expression was down-regulated in a large cohort of hepatocellular carcinoma (HCC) patients, and low expression of miR-31 was significantly associated with poor prognosis of HCC patients. Ectopic expression of miR-31 mimics suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins. Additional study evidenced miR-31 directly to suppress HDAC2 and CDK2 expression by inhibiting mRNA translation in HCC cells. We also found that ectopic expression of miR-31 mimics reduced metastatic potential of HCC cells by selectively regulating epithelial-mesenchymal transition (EMT) regulatory proteins such as N-cadherin, E-cadherin, vimentin and fibronectin. HCC tissues derived from chemical-induced rat liver cancer models validated that miR-31 expression is significantly down-regulated, and that those cell cycle- and EMT-regulatory proteins are deregulated in rat liver cancer. Overall, we suggest that miR-31 functions as a tumor suppressor by selectively regulating cell cycle and EMT regulatory proteins in human hepatocarcinogenesis providing a novel target for the molecular treatment of liver malignancies.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Estudos de Coortes , Regulação para Baixo , Feminino , Genes Supressores de Tumor , Células Hep G2 , Xenoenxertos , Humanos , Masculino , MicroRNAs/metabolismo , Ratos , Fatores de Risco , Transfecção
18.
J Appl Toxicol ; 35(2): 152-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231249

RESUMO

Drug-induced liver injury (DILI) is a major safety concern during drug development and remains one of the main reasons for withdrawal of drugs from the market. Although it is crucial to develop methods that will detect potential hepatotoxicity of drug candidates as early and as quickly as possible, there is still a lack of sensitive and specific biomarkers for DILI that consequently leads to a scarcity of reliable hepatotoxic data. Hence, in this study, we assessed characteristic molecular signatures in rat liver treated with drugs (pyrazinamide, ranitidine, enalapril, carbamazepine and chlorpromazine) that are known to cause DILI in humans. Unsupervised hierarchical clustering analysis of transcriptome changes induced by DILI-causing drugs resulted in three different subclusters on dendrogram, i.e., hepatocellular, cholestatic and mixed type of DILI at early time points (2 days), and multiclassification analysis suggested 31 genes as discernible markers for each DILI pattern. Further analysis for characteristic molecular signature of each DILI pattern provided a molecular basis for different modes of DILI action. A proteomics study of the same rat livers was used to confirm the results, and the two sets of data showed 60 matching classifiers. In conclusion, the data of different DILI-causing drug treatments from genomic analysis in a rat model suggest that DILI-specific molecular signatures can discriminate different patterns of DILI at an early exposure time point, and that they provide useful information for mechanistic studies that may lead to a better understanding of the molecular basis of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Animais , Biomarcadores/análise , Biomarcadores/sangue , Carbamazepina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Clorpromazina/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Enalapril/toxicidade , Expressão Gênica/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Pirazinamida/toxicidade , Ranitidina/toxicidade , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
19.
Cancer Lett ; 354(1): 97-106, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25111897

RESUMO

The aberrant regulation of histone deacetylase 6 (HDAC6) contributes to malignant progression in various types of cancer, but the mechanism underlying gastric carcinogenesis remains unknown. Aberrant HDAC6 overexpression was observed in a subset of human gastric cancer cells. HDAC6 knockdown caused the significant inhibition of gastric cancer cell growth without affecting the transition of cell cycles or the processing of cell death. We demonstrate that an increase in epidermal growth factor receptor (EGFR) signaling through decreased EGFR degradation was mediated by HDAC6 in gastric carcinogenesis. These results establish a molecular mechanism responsible for oncogenic HDAC6, explaining how EGFR signaling induced by the growth factor is sustained during the malignant progression of gastric cancer.


Assuntos
Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Apoptose , Carcinogênese , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Endocitose , Endossomos , Receptores ErbB/genética , Perfilação da Expressão Gênica , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA