Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Microbiol ; 14: 1282689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125568

RESUMO

Introduction: Specific interactions between root exudates and soil microorganisms has been proposed as one of the reasons accounting for the continuous cropping obstacle (CCO) of Panax notoginseng. However, rotation of other crops on soils planted with P. notoginseng (SPP) did not show CCO, suggesting that root exudates of different crops differentially regulate soil microorganisms in SPP. Methods: Here, we investigated the microbial community structure and specific interaction mechanisms of the root exudates of the four plant species, P. notoginseng (Pn), Zea mays (Zm), Nicotiana tabacum (Nt) and Perilla frutescens (Pf), in SPP by static soil culture experiment. Results: The results showed that the chemical diversity of root exudates varied significantly among the four plant species. Pn had the highest number of unique root exudates, followed by Nt, Zm and Pf. Terpenoids, flavonoids, alkaloids and phenolic acids were the most abundant differentially accumulated metabolites (DAMs) in Pn, Nt, Zm and Pf, respectively. However, lipids were the most abundant common DAMs among Zm Nt and Pf. Pn root exudates decreased the relative abundance of bacteria, but increased that of fungi. While specific DAMs in Pn enriched Phenylobacterium_zucineum, Sphingobium_yanoikuyae, Ophiostoma_ulmi and functional pathways of Nucleotide excision repair, Streptomycin biosynthesis, Cell cycle-Caulobacter and Glycolysis/Gluconeogenesis, it inhibited Paraburkholderia _caledonica and Ralstonia_pickettii. However, common DAMs in Zm, Nt and Pf had opposite effects. Moreover, common DAMs in Zm, Nt and Pf enriched Ralstonia_pseudosolanacearum and functional pathway of Xylene degradation; unique DAMs in Zm enriched Talaromyces_purcureogeneus, while inhibiting Fusarium_tricinctum and functional pathways of Nucleotide excision repair and Alanine, aspartate and glutamate metabolism; unique DAMs in Pf enriched Synchytrium_taraxaci. Discussion: The core strains identified that interact with different root exudates will provide key clues for regulation of soil microorganisms in P. notoginseng cultivation to alleviate CCO.

2.
Appl Opt ; 62(14): 3772-3777, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706995

RESUMO

Integrated narrow-linewidth lasers are the key devices in compact coherent optical systems of metrology, sensing, and optical microwave generation. Here, we demonstrate a hybrid integrated laser based on an optical negative feedback scheme. The laser is composed of a commercial distributed feedback (DFB) laser diode and an on-chip micro-resonator with a Q-factor of 0.815 million. The feedback optical field is coupled back to the laser cavity through the back facet. Therefore, the laser can maintain the lasing efficiency of the DFB laser diode. The linewidth of the DFB laser diode is compressed from 2 MHz to 6 kHz, corresponding to the linewidth reduction factor of 25.2 dB. The theoretical result shows that the laser performance still has a huge improvement margin through precise control of the detuning between laser frequency and the micro-resonator, as well as the phase delay of the feedback optical field. The hybrid narrow-linewidth laser diode has wide application prospects in coherent optical systems benefitting from the low cost and volume productivity.

3.
J Colloid Interface Sci ; 647: 438-445, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37269740

RESUMO

Incorporating less expensive nonmetal phosphorus (P) into noble metal-based catalysts has become a developing strategy to enhance the catalytic performance of electrocatalysts for methanol electrooxidation reaction (MOR), attributing to the electronic and synergistic structure alteration mechanism. In the work, three-dimensional nitrogen-doped graphene anchoring ternary Pd-Ir-P nanoalloy catalyst (Pd7IrPx/NG) was prepared by co-reduction strategy. As a multi-electron system, elemental P adjusts the outer electron structure of Pd and diminishes the particle size of nanocomposites, which heightens the electrocatalytic activity effectively and accelerate MOR kinetics in alkaline medium. The study reveals that the electron effect and ligand effect induced by P atoms on the hydrophilic and electron-rich surface of Pd7Ir/NG and Pd7IrPx/NG samples can reduce the initial oxidation potential and peak potential of COads, showing significantly enhanced the anti-poisoning ability compared with commercial Pd/C as the benchmark. Meanwhile, the stability of Pd7IrPx/NG is significantly higher than that of commercial Pd/C. The facile synthetic approach provides an economic option and a new vision for the development of electrocatalysts in MOR.

4.
J Colloid Interface Sci ; 629(Pt B): 482-491, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174291

RESUMO

Interface construction is one of the most feasible approaches to optimize the physical and chemical properties of noble metal-based catalysts and consequently improve their catalytic performance. Herein, the design of effective reaction interfaces by bimetallic, trimetallic or polymetallic alloying has been extensively explored. In this research, metalloid boron (B) was alloyed within palladium-iridium (Pd-Ir) nanoalloy supported on nitrogen-doped graphene (NG) to promote the methanol oxidation reaction (MOR) in alkaline media. Being benefited from this, the optimum Pd7IrBx/NG catalyst exhibited enhanced EOR activity mass activity (1141.7 mA mg-1) and long-term stability (58.2 % current density retention rate after 500 cycles of cyclic voltammetry). The mechanism was further studied by electrochemical experiments and characterization, which highlighted that the multifunctional effect of electronic effect and strain effect and kinetic optimization induced by boron doping played a very positive role on MOR.

5.
Nanoscale ; 14(46): 17392-17400, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382672

RESUMO

The introduction of functional groups or oxygen vacancies into Pd-based electrocatalysts is a powerful strategy for enhancing the electrocatalytic performances for many electrocatalytic reactions. Herein, an amorphous ceria-modified Pd nanocomposite anchored on D-4-amino-phenylalanine (DAP)-functionalized graphene nanosheets (Pd-CeO2-x/FGS) was prepared by a facile and effective one-pot synthetic strategy and further used as an electrocatalyst for the ethanol oxidation reaction (EOR) in alkaline electrolytes. The obtained Pd-CeO2-x/FGS exhibits relatively high electrocatalytic activity, fast kinetics and excellent antipoisoning ability as well as robust durability for EOR, outperforming the comparable electrocatalysts as well as commercial Pd/C. The experimental results show that the enhanced EOR properties of Pd-CeO2-x/FGS can be attributed to the DAP-functionalization and CeO2-x-modification. Adequate functional groups (amino and carboxyl groups) and abundant oxygen vacancies were introduced in Pd-CeO2-x/FGS by DAP-functionalization and CeO2-x-modification. The functional groups facilitate the anchoring of small nanoparticles onto the substrate as well as modulate the electron density of Pd. The oxygen vacancies boost the adsorption ability of the reactive oxygen species (OHads) and accelerate the kinetics of the potential-limiting step for EOR. This study proposes a new strategy for the rational design of highly efficient catalysts for the electro-oxidation reaction.

6.
Front Psychol ; 13: 824840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645879

RESUMO

In an increasingly complex external environment, innovation is an important way for companies to build sustainable competitiveness. This research discusses employee creativity from the perspective of Family Supportive Supervisor Behavior (FSSB) based on conservation of resource theory, social exchange theory, psychological capital theory and emotional spillover theory. Through a series of surveys of employees in different companies and jobs, we can understand the impact of family-supporting supervisors' behavior on their creativity. Combined with the survey data, a structural equation model (SEM) is constructed to analyze the mediating effects of psychological capital and positive emotions based on the causal mediation model. The research found that the positive influence of family-supporting supervisors' behavior on employees' creativity has three forms. First, supervisors improve employees' motivation and sense of efficacy by providing various support resources. Second, supervisors can generate positive spillover effects among employees by influencing employees' psychological state. Third, supervisors stimulate the creativity of subordinates by promoting work participation and mobility. According to the research conclusions, in order to improve the employee creativity, we should provide incentives to encourage supervisors to carry out family support behaviors, identify employee characteristics to help supervisors provide personalized support, cultivate family supportive leaders, and attach importance to emotional support and play the role of psychological capital and positive emotions.

7.
J Colloid Interface Sci ; 610: 944-952, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863544

RESUMO

Development of good support materials is widely adopted as a valid strategy to fabricate high performance electrocatalysts for the ethanol oxidation reaction (EOR). In this study, the small diameter Ti3C2Tx MXene thin nanosheets inserted into three-dimensional nitrogen-doped grapheme (NG) was constructed via a facile hydrothermal method and employed as support materials for anchoring Pd nanocrystals (Pd/Ti3C2Tx@NG). The obtained-Pd/Ti3C2Tx@NG as EOR electrocatalyst in alkaline media outperforms the commercial Pd/C with better electrocatalytic activity, enhanced long-term stability and high CO tolerance. The Ti3C2Tx inserted into NG probably plays a key role for enhancing the properties of the synthesized-catalyst. Inserting Ti3C2Tx into NG allows the electrocatalysts to have high porosity, surface hydrophilicity, sufficient number of anchor sites for Pd nanocrystals and modifies its electronic properties, which can promote the electrocatalytic activity and durability. The enhanced EOR performance endows Pd/Ti3C2Tx@NG with great application potential in fuel cells as an anode catalyst. Furthermore, the prepared Ti3C2Tx@NG is also suitable in various desired applications, especially other oxidation reactions.

8.
J Colloid Interface Sci ; 605: 44-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303923

RESUMO

Palladium (Pd)-based materials have been widely used as catalysts for the methanol oxidation reaction (MOR). Unfortunately, the catalytic activity was limited by structure, carbon monoxide intermediates (COads) tolerance and stability. It was currently difficult to be used in large-scale commercial production. Herein, to further improve their electrocatalytic activity, a facile oxidation method to achieve in-situ oxidation of palladium-iridium (PdIr) alloy on nitrogen-doped graphene (NGS) is used, which is named as Pd-Ir-O/NGS. The new catalyst exhibits remarkable MOR activity (1374.8 mA mg-1), COads tolerance (the onset oxidation potential reach 0.725 V) and stability (the current density retention rate after 500 cycles of cyclic voltammetry is 44.9%). As a catalyst for MOR, the Pd-Ir-O/NGS has more outstanding electrocatalytic performance compared with commercial Pd/C and other counterparts. The mechanism study shows that the excellent catalytic performance is attributed to (1) the synergistic electronic effect of Pd-Ir-O due to the introduction of Ir and O, (2) the insertion of O into PdIr alloy that kinetically accelerated the oxidation of poisoning methoxy intermediates and (3) the vital roles of unique three-dimensional (3D) structure of NGS with abundant nitrogen atoms. Our findings herald a new paradigm for the modification of palladium-based materials for MOR and provide an alternative design principle for novel 3D carbon-based material for various application.

9.
Inorg Chem ; 60(22): 17388-17397, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34709791

RESUMO

The development of low-cost and high-performance electrocatalyst-supporting materials is desirable and necessary for the ethanol oxidation reaction (EOR). Here, we report a facile and universal template-free approach for the first time to synthesize three-dimensional (3D) flower-like ionic liquid-functionalized graphene (IL-RGO). Then, the crystalline Pd nanoparticles were anchored on IL-RGO by a simple wet chemical growth method without a surfactant (denoted as Pd/IL-RGO). In particular, the IL is conducive to form a 3D flower-like structure. The optimized Pd/IL-RGO-2 presents a much-promoted electrocatalytic performance toward the EOR compared with commercial Pd/C catalysts, which is mainly derived from the grafted IL on RGO and the unique 3D flower-like structure. In detail, the IL can control, stabilize, and disperse the Pd nanocrystals as well as serving as the solvent and electrolyte in the microenvironment of the EOR, and the 3D flower-like structure endows the Pd/IL-RGO with high surface areas and rich opened channels, thereby kinetically accelerating the charge/mass transfers. Furthermore, density functional theory calculations reveal that the strong electronic interaction between Pd and IL-RGO generates a downshift of dcenter for Pd and thereby enhances the durability toward CO-like intermediates and electrocatalytic reaction kinetics.

10.
Nanoscale ; 13(33): 14197-14206, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477701

RESUMO

Surface modification by loading a water oxidation co-catalyst (WOC) is generally considered an efficient means to optimize the sluggish surface oxygen evolution reaction (OER) of a hematite photoanode for photoelectrochemical (PEC) water oxidation. However, the surface WOC usually exerts little impact on the bulk charge separation of hematite. Herein, an ultrathin citrate-Ni0.9Co0.1(OH)x [Cit-Ni0.9Co0.1(OH)x] is conformally coated on the fluorine-doped hematite (F-Fe2O3) photoanode for PEC water oxidation to simultaneously promote the internal hole extraction and surface hole injection of the target photoanode. Besides, the conformally coated Cit-Ni0.9Co0.1(OH)x overlayer passivates the redundant surface trap states of F-Fe2O3. These factors result in a superior photocurrent density of 2.52 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (V vs. RHE) for the target photoanode. Detailed investigation manifests that the hole extraction property in Cit-Ni0.9Co0.1(OH)x is mainly derived from the Ni sites, while Co incorporation endows the overlayer with more catalytic active sites. This synergistic effect between Ni and Co contributes to a rapid and continuous hole migration pathway from the bulk to the interface of the target photoanode, and then to the electrolyte for water oxidation.

11.
J Colloid Interface Sci ; 604: 198-207, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265680

RESUMO

Advanced photocatalyst is a key for photocatalytic water purification in the environmental pollutant remediation. In this study, graphitic carbon nitride (g-CN) modified by CuS and TiO2 ternary nanohybrid (CuS-TiO2-g-CN) with close interfacial contact among CuS, TiO2 and g-CN was fabricated through a facile and green method. Compared to the binary g-CN-based counterparts, the CuS-TiO2-g-CN possesses multiple photo-generated charge transfers owing to the synergistic action of CuS, TiO2 and g-CN. And hence the separation efficiency of photo-generated electron-hole pairs can be improved for the CuS-TiO2-g-CN. The optical and photoelectrochemical measurements prove that the CuS-TiO2-g-CN has narrower band gap energy and higher transient photocurrent density than those of g-CN and TiO2-g-CN. Therefore, the CuS-TiO2-g-CN shows notably higher photocatalytic activity and stability towards the degradation of Rhodamine B (RhB) than g-CN and TiO2-g-CN under visible-light irradiation. Moreover, a possible visible-light photocatalytic mechanism of CuS-TiO2-g-CN for degrading RhB was also proposed on the basis of the experimental results and literature reports.


Assuntos
Cobre , Poluentes Ambientais , Catálise , Grafite , Compostos de Nitrogênio , Fotólise , Sulfetos , Titânio
12.
Korean J Radiol ; 22(5): 829-839, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686817

RESUMO

OBJECTIVE: To compare the diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3-tesla (3T) magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of visceral pleural surface invasion (VPSI). Visceral pleural invasion by non-small-cell lung cancer (NSCLC) can be classified into two types: PL1 (without VPSI), invasion of the elastic layer of the visceral pleura without reaching the visceral pleural surface, and PL2 (with VPSI), full invasion of the visceral pleura. MATERIALS AND METHODS: Thirty-three patients with pathologically confirmed VPSI by NSCLC were retrospectively reviewed. Multidetector CT and contrast-enhanced 3T MRI with a free-breathing radial three-dimensional fat-suppressed volumetric interpolated breath-hold examination (VIBE) pulse sequence were compared in terms of the length of contact, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. Supplemental evaluation of the tumor-pleura interface (smooth versus irregular) could only be performed with MRI (not discernible on CT). RESULTS: At the tumor-pleura interface, radial VIBE MRI revealed a smooth margin in 20 of 21 patients without VPSI and an irregular margin in 10 of 12 patients with VPSI, yielding an accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F-score for VPSI detection of 91%, 83%, 95%, 91%, 91%, and 87%, respectively. The McNemar test and receiver operating characteristics curve analysis revealed no significant differences between the diagnostic accuracies of CT and MRI for evaluating the contact length, angle of mass margin, or arch distance-to-maximum tumor diameter ratio as predictors of VPSI. CONCLUSION: The diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3T MRI and CT were equal in terms of the contact length, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. The advantage of MRI is its clear depiction of the tumor-pleura interface margin, facilitating VPSI detection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética , Idoso , Área Sob a Curva , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/diagnóstico por imagem , Neoplasias Pleurais/secundário , Curva ROC , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
13.
J Colloid Interface Sci ; 588: 384-392, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422787

RESUMO

Adjusting the surface structures and electronic structures of metal nanocrystals (NCs) by the metal-organic interface interaction is an emerging strategy to enhance their electrocatalytic behavior. In this work, the d-phenylalanine-functionalized graphene (DPHE-GS) anchoring Pd NCs (denoted as Pd/DPHE-GS) was fabricated via the diazo-reaction followed by a simple chemical reduction. Owing to the metal-organic interface interaction between Pd NCs and DPHE, the size, distribution and electronic structures of Pd NCs on the surface of DPHE-GS can be adjusted. Therefore, the Pd/DPHE-GS shows the highest electrocatalytic activity and the most robust long-term durability and stability towards methanol and ethanol oxidation reaction (MOR and EOR) compared to the commercial Pd/C and other counterparts. This work presents an effective interface engineering strategy to enhance electrocatalytic property.

14.
Opt Express ; 28(24): 37040-37048, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379785

RESUMO

Mutual phase coherence is the utmost crucial factor in an asynchronous optical sampling system. The enhancement is commonly achieved by phase-locking dual femtosecond lasers to a shared narrow-linewidth cavity-stabilized laser. Here we report such a system with a low residual optical phase jitter at a level of 0.04 rad in a Fourier frequency band from 1 Hz to 5 MHz around 1.55 µm, corresponding to a timing jitter of 30 as. The residual phase jitter reaches 1 rad at a Fourier frequency between 0.06 Hz and 0.1 Hz, from which the phase-coherence time is inferred to be at least 10 s. The multi-heterodyne beats experimentally reveal a hardware-limited phase coherence time of ∼8.155 s throughout the direct lasing spectral band.

15.
J Hazard Mater ; 397: 122654, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485558

RESUMO

Recently, oxidative desulfurization (ODS) is favoured by researchers because it is based on mild conditions and does not consume hydrogen. However, the preparation process of catalyst for ODS was not green or costly, which limits its further industrial applications. In this study, a facile route has been explored to grow the mesoporous MoO3/SiO2 nanosphere networks (MoO3/SiO2 NN) using low-cost air without surfactants. Herein, the air not only served as the template to self-assemble and form the nanosphere network structure but acted as a mesopore-directing agent to make mesopores on the MoO3/SiO2 nanosphere. Moreover, the recovered waste mother liquor was also successfully applied to prepare nanomaterials. Gratifyingly, the nanocomposites of MoO3/SiO2 NN displayed remarkable pore structure, large specific surface area (201 m2  g-1) and excellent amphipathy (CA = 24.7° and 13.6° of water and n-octane, respectively) making it a promising catalyst for two-phase ODS reaction with H2O2 as an oxidant. Meanwhile, the high TOF value (56.6 h-1) and outstanding durability were obtained under optimum conditions (Yield > 99 % at 70 °C and O/S = 8:1 for 1 h, 20 mg catalyst) and the products were detected by GC-MS and 1H NMR. Therefore, an environmentally benign self-assembly procedure can facilely prepare more types of mesoporous catalysts for large-scale industrial application.

16.
Appl Opt ; 59(16): 4865-4871, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543480

RESUMO

Broadband, coherent narrow-linewidth optical frequency synthesis is of crucial importance in dual-comb interferometric measurement. Here we present a detailed description of the construction and performance characterization of a hertz-level linewidth coherent optical frequency synthesizer across the optical telecommunication band. A narrow-linewidth cavity-stabilized laser at 1565.00 nm is built and coherently transferred through a fiber link with an additional fractional frequency instability of 2.0×10-16 at 1 s averaging time. Broadband, coherent optical frequency synthesis is then achieved by steering one mode of a laser frequency comb with the transferred optical frequency oscillation. By beating with a 1542.14 nm ultra-stable cavity-stabilized laser, the evaluated fractional frequency stability and absolute linewidth of the nearest synthesized optical oscillation are 3.5×10-15 at 1 s averaging time and 1.8 Hz, respectively. According to the ultra-low-noise feature of the utilized laser frequency comb of 4.7×10-17 at 1 s averaging time, the synthesized optical frequency oscillations could maintain the high coherence across the comb's output bandwidth.

17.
ACS Omega ; 4(2): 4101-4108, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459619

RESUMO

Anisotropic two-dimensional materials with direction-dependent mechanical and optical properties have attracted significant attention in recent years. In this work, based on density functional theory calculations, unexpected elastic anisotropy and optical isotropy in van der Waals (vdW) heterostructures have been theoretically proposed by assembling the well-known anisotropic black phosphorene (BP) and transition-metal trisulfides MS3 (M = Ti, Hf) together. It is interesting to see that the BP/MS3 vdW heterostructures show anisotropic flexibility in different directions according to the elastic constants, Young's modulus, and Poisson's ratio. We have further unraveled their physical origin of the type-II band structure nature with their conduction band minimum and valence band maximum separated in different layers. In particular, our results on the optical response functions including the excitonic effects of the BP/MS3 vdW heterostructures suggest their unexpected optical isotropies together with the enhancements of the solar energy conversion efficiency.

18.
Int J Mol Sci ; 20(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362363

RESUMO

The initiation and induction of root primordia are of great importance for adventitious root (AR) formation in cutting propagation of horticultural and forestry crops. However, the underlying mechanisms orchestrating these early phases of AR formation remain largely unexplored. Here, we investigated the physiological and transcriptomic changes during the early AR phases in mulberry stem hardwood cuttings. The results showed that the concentrations of soluble proteins increased, whereas concentrations of soluble sugars and starch were decreased. Indole-3-acetic acid (IAA) and zeatin had a rapid transit peak at 6 h after planting (hAP) and declined thereafter. The activities of peroxidase and catalase persistently increased and indole-3-acetic acid oxidase was maintained at a higher stable level from 0 hAP, while the activities of polyphenol oxidase fluctuated with soluble phenolics and IAA levels. The comparative transcriptome identified 4276 common genes that were differentially regulated at -6, 0 and 54 hAP. They were separated into five clusters with distinct biological functions such as defense response and photosynthesis. Considerable common genes were assigned to pathways of sugar metabolism, mitogen-activated protein kinase, and circadian rhythm. The gene co-expression network analysis revealed three major co-expressed modules involved in stress responses, hormone signaling, energy metabolism, starch metabolism, and circadian rhythm. These findings demonstrate the positive effect of auxin on AR induction, and uncovered the crucial roles of stress responses, hormone signaling and circadian rhythm in coordinating the physiological changes during the early phases of AR formation in mulberry stem hardwood cuttings.


Assuntos
Regulação da Expressão Gênica de Plantas , Morus/fisiologia , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
19.
Plants (Basel) ; 8(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064066

RESUMO

Physiological and morphological traits have a considerable impact on the biomass production of fast-growing trees. To compare cultivar difference in shoot biomass and investigate its relationships with leaf functional traits in mulberry, agronomic traits and 20 physiological and morphological attributes of 3-year-old mulberry trees from eight cultivars growing in a common garden were analyzed. The cultivars Xiang7920, Yu711, and Yunsang2 had higher shoot fresh biomass (SFB), which was closely associated with their rapid leaf expansion rate, large leaf area, and high stable carbon isotope composition (δ13C). Conversely, the cultivars 7307, Husang32, Wupu, Yunguo1, and Liaolu11 were less productive, and this was primarily the result of slower leaf expansion and smaller leaf size. Growth performance was negatively correlated with leaf δ13C and positively correlated with the total nitrogen concentration, indicating that a compromise exists in mulberry between water use efficiency (WUE) (low δ13C) and high nitrogen consumption for rapid growth. Several morphological traits, including the maximum leaf area (LAmax), leaf width and length, petiole width and length, leaf number per shoot, and final shoot height were correlated with SFB. The physiological traits that were also influential factors of shoot biomass were the leaf δ13C, the total nitrogen concentration, and the water content. Among the studied leaf traits, LAmax, leaf δ13C, and concentrations of chlorophyll a and b were identified as the most representative predictor variables for SFB, accounting for 73% of the variability in SFB. In conclusion, a combination of LAmax, leaf δ13C, and chlorophyll should be considered in selection programs for high-yield mulberry cultivars.

20.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669595

RESUMO

Reliable and continuous navigation solutions are essential for high-accuracy location-based services. Currently, the real-time kinematic (RTK) based Global Positioning System (GPS) is widely utilized to satisfy such requirements. However, RTK's accuracy and continuity are limited by the insufficient number of the visible satellites and the increasing length of base-lines between reference-stations and rovers. Recently, benefiting from the development of precise point positioning (PPP) and BeiDou satellite navigation systems (BDS), the issues existing in GPS RTK can be mitigated by using GPS and BDS together. However, the visible satellite number of GPS + BDS may decrease in dynamic environments. Therefore, the inertial navigation system (INS) is adopted to bridge GPS + BDS PPP solutions during signal outage periods. Meanwhile, because the quality of BDS geosynchronous Earth orbit (GEO) satellites is much lower than that of inclined geo-synchronous orbit (IGSO) satellites, the predicted observation residual based robust extended Kalman filter (R-EKF) is adopted to adjust the weight of GEO and IGSO data. In this paper, the mathematical model of the R-EKF aided GEO/IGSO/GPS PPP/INS tight integration, which uses the raw observations of GPS + BDS, is presented. Then, the influences of GEO, IGSO, INS, and R-EKF on PPP are evaluated by processing land-borne vehicle data. Results indicate that (1) both GEO and IGSO can provide accuracy improvement on GPS PPP; however, the contribution of IGSO is much more visible than that of GEO; (2) PPP's accuracy and stability can be further improved by using INS; (3) the R-EKF is helpful to adjust the weight of GEO and IGSO in the GEO/IGSO/GPS PPP/INS tight integration and provide significantly higher positioning accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA