Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014712

RESUMO

GM3 synthase deficiency (GM3SD) is an infantile-onset epileptic encephalopathy syndrome caused by biallelic loss-of-function mutations in ST3GAL5. Loss of ST3GAL5 activity in humans results in systemic ganglioside deficiency and severe neurological impairment. No disease-modifying treatment is currently available. Certain recombinant adeno-associated viruses (rAAVs) can cross the blood-brain barrier to induce widespread, long-term gene expression in the CNS and represent a promising therapeutic strategy. Here, we show that a first-generation rAAV-ST3GAL5 replacement vector using a ubiquitous promoter restored tissue ST3GAL5 expression and normalized cerebral gangliosides in patient-derived induced pluripotent stem cell neurons and brain tissue from St3gal5-KO mice but caused fatal hepatotoxicity when administered systemically. In contrast, a second-generation vector optimized for CNS-restricted ST3GAL5 expression, administered by either the intracerebroventricular or i.v. route at P1, allowed for safe and effective rescue of lethality and behavior impairment in symptomatic GM3SD mice up to a year. These results support further clinical development of ST3GAL5 gene therapy.


Assuntos
Epilepsia , Humanos , Animais , Camundongos , Epilepsia/genética , Gangliosídeos/genética , Mutação , Sialiltransferases/genética , Sialiltransferases/metabolismo
2.
Angew Chem Int Ed Engl ; 62(22): e202300418, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36941210

RESUMO

Zn-I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn-I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in -SO3 - groups is beneficial to attract Zn2+ ions and repel detrimental SO4 2- /polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn-I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm-2 .

3.
ACS Appl Mater Interfaces ; 14(35): 39927-39938, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36001325

RESUMO

Combining the Ni-rich layered cathode (Ni ≥ 80%) with high operating voltage is considered as a feasible solution to achieve high-energy lithium-ion batteries (LIBs). However, the working voltage is limited in practical applications due to the poor interface stability in traditional carbonate electrolytes. Herein, LiBF4 and LiNO3 are added as film-forming additives and 1.0 M LiPF6 in SL/FEC/EMC with 0.5 wt % LiBF4-LiNO3 (HVE) is obtained. A uniform and inorganic-rich cathode electrolyte interphase (CEI) as well as a dense and Li3N-LiF-rich solid electrolyte interphase (SEI) could be in situ generated on LiNi0.8Co0.1Mn0.1O2 (NCM811) and graphite (Gr) electrode in HVE, respectively. The robust interface film with electronic insulation and ionic conductivity effectively stabilizes the NCM811/Gr-electrolyte interfaces and improves the Li+ diffusion kinetics, enabling the high-load NCM811-Gr to maintain 85.2% capacity (∼180 mA h g-1) after 300 cycles under 4.4 V. Besides, the 4.2 V NCM811-Gr retains 90.4% of the initial capacity after 200 cycles at 2 C (∼6 mA h cm-2). Compared with the traditional carbonate electrolyte (LB301), HVE has obvious advantages in terms of high-voltage and fast dynamics performance. Especially, good thermal stability and economy make HVE a promising electrolyte for commercial high-energy LIBs.

4.
Proc Natl Acad Sci U S A ; 119(10): e2114303119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238684

RESUMO

Identifying inhibitors of pathogenic proteins is the major strategy of targeted drug discoveries. This strategy meets challenges in targeting neurodegenerative disorders such as Huntington's disease (HD), which is mainly caused by the mutant huntingtin protein (mHTT), an "undruggable" pathogenic protein with unknown functions. We hypothesized that some of the chemical binders of mHTT may change its conformation and/or stability to suppress its downstream toxicity, functioning similarly to an "inhibitor" under a broader definition. We identified 21 potential mHTT selective binders through a small-molecule microarray­based screening. We further tested these compounds using secondary phenotypic screens for their effects on mHTT-induced toxicity and revealed four potential mHTT-binding compounds that may rescue HD-relevant phenotypes. Among them, a Food and Drug Administration­approved drug, desonide, was capable of suppressing mHTT toxicity in HD cellular and animal models by destabilizing mHTT through enhancing its polyubiquitination at the K6 site. Our study reveals the therapeutic potential of desonide for HD treatment and provides the proof of principle for a drug discovery pipeline: target-binder screens followed by phenotypic validation and mechanistic studies.


Assuntos
Desonida , Proteína Huntingtina , Doença de Huntington , Mutação , Animais , Desonida/química , Desonida/farmacologia , Modelos Animais de Doenças , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Estabilidade Proteica/efeitos dos fármacos
5.
Nat Med ; 28(1): 117-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949835

RESUMO

Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.


Assuntos
Proteína C9orf72/genética , Mutação , Oligonucleotídeos Antissenso/genética , Animais , Proteína C9orf72/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
6.
Trends Mol Med ; 27(6): 520-523, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33714697

RESUMO

De novo glycosphingolipid (GSL) biosynthesis defects cause severe neurological diseases, including hereditary sensory and autonomic neuropathy type 1A (HSAN1A), GM3 synthase deficiency, and hereditary spastic paraplegia type 26 (HSPG26), each lacking effective treatment. Recombinant adeno-associated virus (AAV)-mediated gene therapy has emerged as a powerful treatment for monogenic diseases and might be particularly suitable for these neurological conditions.


Assuntos
Dependovirus/genética , Epilepsia/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Neuropatias Hereditárias Sensoriais e Autônomas/terapia , Proteínas Recombinantes/administração & dosagem , Sialiltransferases/deficiência , Paraplegia Espástica Hereditária/terapia , Epilepsia/genética , Vetores Genéticos/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Fenótipo , Proteínas Recombinantes/genética , Sialiltransferases/genética , Paraplegia Espástica Hereditária/genética
7.
Nat Chem Biol ; 13(11): 1152-1154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869595

RESUMO

Protein misfolding is a common theme in neurodegenerative disorders including Huntington's disease (HD). The HD-causing mutant huntingtin protein (mHTT) has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, and the most toxic of these is the one recognized by antibody 3B5H10. Here we show that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective autophagy in human cells and brains, revealing mechanisms of its higher toxicity.


Assuntos
Autofagia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Mutação , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/genética , Poliubiquitina/metabolismo , Conformação Proteica , Proteólise , Sequências Repetitivas de Ácido Nucleico , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA