Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nat Med ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890530

RESUMO

The pathogenesis of allograft (dys)function has been increasingly studied using 'omics'-based technologies, but the focus on individual organs has created knowledge gaps that neither unify nor distinguish pathological mechanisms across allografts. Here we present a comprehensive study of human pan-organ allograft dysfunction, analyzing 150 datasets with more than 12,000 samples across four commonly transplanted solid organs (heart, lung, liver and kidney, n = 1,160, 1,241, 1,216 and 8,853 samples, respectively) that we leveraged to explore transcriptomic differences among allograft dysfunction (delayed graft function, acute rejection and fibrosis), tolerance and stable graft function. We identified genes that correlated robustly with allograft dysfunction across heart, lung, liver and kidney transplantation. Furthermore, we developed a transfer learning omics prediction framework that, by borrowing information across organs, demonstrated superior classifications compared to models trained on single organs. These findings were validated using a single-center prospective kidney transplant cohort study (a collective 329 samples across two timepoints), providing insights supporting the potential clinical utility of our approach. Our study establishes the capacity for machine learning models to learn across organs and presents a transcriptomic transplant resource that can be employed to develop pan-organ biomarkers of allograft dysfunction.

2.
Transplantation ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685196

RESUMO

BACKGROUND: The number of donors from donation after circulatory determination of death (DCDD) has increased by at least 4-fold over the past decade. This study evaluated the association between the antecedent cardiac arrest status of controlled DCDD donors and the risk of delayed graft function (DGF). METHODS: Using data from the Australia and New Zealand Dialysis and Transplant, the associations between antecedent cardiac arrest status of DCDD donors before withdrawal of cardiorespiratory support, DGF, posttransplant estimated glomerular filtration rate (eGFR), and allograft loss were examined using adjusted logistic, linear mixed modeling, and cox regression, respectively. Among donors who experienced cardiac arrest, we evaluated the association between duration and unwitnessed status of arrest and DGF. RESULTS: A total of 1173 kidney transplant recipients received DCDD kidneys from 646 donors in Australia between 2014 and 2019. Of these, 335 DCDD had antecedent cardiac arrest. Compared with recipients of kidneys from donors without antecedent cardiac arrest, the adjusted odds ratio (95% confidence interval) for DGF was 0.85 (0.65-1.11) among those with kidneys from donors with cardiac arrest. There was no association between antecedent cardiac arrest and posttransplant eGFR or allograft loss. The duration of cardiac arrest and unwitnessed status were not associated with DGF. CONCLUSIONS: This focused analysis in an Australian population showed that the allograft outcomes were similar whether DCDD donors had experienced a prior cardiac arrest, with no associations between duration or unwitnessed status of arrest and risk of DGF. This study thus provides important reassurance to transplant programs and the patients they counsel, to accept kidneys from donors through the DCDD pathway irrespective of a prior cardiac arrest.

3.
Sci Rep ; 14(1): 4248, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378802

RESUMO

In the enduring challenge against disease, advancements in medical technology have empowered clinicians with novel diagnostic platforms. Whilst in some cases, a single test may provide a confident diagnosis, often additional tests are required. However, to strike a balance between diagnostic accuracy and cost-effectiveness, one must rigorously construct the clinical pathways. Here, we developed a framework to build multi-platform precision pathways in an automated, unbiased way, recommending the key steps a clinician would take to reach a diagnosis. We achieve this by developing a confidence score, used to simulate a clinical scenario, where at each stage, either a confident diagnosis is made, or another test is performed. Our framework provides a range of tools to interpret, visualize and compare the pathways, improving communication and enabling their evaluation on accuracy and cost, specific to different contexts. This framework will guide the development of novel diagnostic pathways for different diseases, accelerating the implementation of precision medicine into clinical practice.


Assuntos
Comunicação , Medicina de Precisão , Processos Mentais
4.
Nat Commun ; 15(1): 1540, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378775

RESUMO

Recent advancements in plasma lipidomic profiling methodology have significantly increased specificity and accuracy of lipid measurements. This evolution, driven by improved chromatographic and mass spectrometric resolution of newer platforms, has made it challenging to align datasets created at different times, or on different platforms. Here we present a framework for harmonising such plasma lipidomic datasets with different levels of granularity in their lipid measurements. Our method utilises elastic-net prediction models, constructed from high-resolution lipidomics reference datasets, to predict unmeasured lipid species in lower-resolution studies. The approach involves (1) constructing composite lipid measures in the reference dataset that map to less resolved lipids in the target dataset, (2) addressing discrepancies between aligned lipid species, (3) generating prediction models, (4) assessing their transferability into the targe dataset, and (5) evaluating their prediction accuracy. To demonstrate our approach, we used the AusDiab population-based cohort (747 lipid species) as the reference to impute unmeasured lipid species into the LIPID study (342 lipid species). Furthermore, we compared measured and imputed lipids in terms of parameter estimation and predictive performance, and validated imputations in an independent study. Our method for harmonising plasma lipidomic datasets will facilitate model validation and data integration efforts.


Assuntos
Lipidômica , Plasma , Humanos , Espectrometria de Massas , Lipídeos
5.
Nat Commun ; 15(1): 509, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218939

RESUMO

Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution spatial mapping of gene expression, while also introducing significant analytical challenges in accurately identifying cells and assigning transcripts. Existing methods grapple with cell segmentation, frequently leading to fragmented cells or oversized cells that capture contaminated expression. To this end, we present BIDCell, a self-supervised deep learning-based framework with biologically-informed loss functions that learn relationships between spatially resolved gene expression and cell morphology. BIDCell incorporates cell-type data, including single-cell transcriptomics data from public repositories, with cell morphology information. Using a comprehensive evaluation framework consisting of metrics in five complementary categories for cell segmentation performance, we demonstrate that BIDCell outperforms other state-of-the-art methods according to many metrics across a variety of tissue types and technology platforms. Our findings underscore the potential of BIDCell to significantly enhance single-cell spatial expression analyses, enabling great potential in biological discovery.


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Eritrócitos Anormais , Teste de Histocompatibilidade , Aprendizado de Máquina Supervisionado
6.
Genome Res ; 34(1): 119-133, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38190633

RESUMO

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space by using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal data sets, we show scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome data set we generated from differentiating mouse embryonic stem cells over time, we show scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Regulação da Expressão Gênica
7.
Clin Transl Immunology ; 12(11): e1462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927302

RESUMO

Objective: The importance of inflammation in atherosclerosis is well accepted, but the role of the adaptive immune system is not yet fully understood. To further explore this, we assessed the circulating immune cell profile of patients with coronary artery disease (CAD) to identify discriminatory features by mass cytometry. Methods: Mass cytometry was performed on patient samples from the BioHEART-CT study, gated to detect 82 distinct cell subsets. CT coronary angiograms were analysed to categorise patients as having CAD (CAD+) or having normal coronary arteries (CAD-). Results: The discovery cohort included 117 patients (mean age 61 ± 12 years, 49% female); 79 patients (68%) were CAD+. Mass cytometry identified changes in 15 T-cell subsets, with higher numbers of proliferating, highly differentiated and cytotoxic cells and decreases in naïve T cells. Five T-regulatory subsets were related to an age and gender-independent increase in the odds of CAD incidence when expressing CCR2 (OR 1.12), CCR4 (OR 1.08), CD38 and CD45RO (OR 1.13), HLA-DR (OR 1.06) and Ki67 (OR 1.22). Markers of proliferation and differentiation were also increased within B cells, while plasmacytoid dendritic cells were decreased. This combination of changes was assessed using SVM models in discovery and validation cohorts (area under the curve = 0.74 for both), confirming the robust nature of the immune signature detected. Conclusion: We identified differences within immune subpopulations of CAD+ patients which are indicative of a systemic immune response to coronary atherosclerosis. This immune signature needs further study via incorporation into risk scoring tools for the precision diagnosis of CAD.

8.
iScience ; 26(11): 108220, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965156

RESUMO

The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.

9.
NPJ Syst Biol Appl ; 9(1): 51, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857632

RESUMO

Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field.


Assuntos
Redes Reguladoras de Genes , Multiômica , Redes Reguladoras de Genes/genética
10.
Transpl Int ; 36: 11338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767525

RESUMO

Accurate prediction of allograft survival after kidney transplantation allows early identification of at-risk recipients for adverse outcomes and initiation of preventive interventions to optimize post-transplant care. Many prediction algorithms do not model cohort heterogeneity and may lead to inaccurate assessment of longer-term graft outcomes among minority groups. Using data from a national Australian kidney transplant cohort (2008-2017) as the derivation set, we developed P-Cube, a multi-step precision prediction pathway model for predicting overall graft survival in three ethnic subgroups: European Australians, Asian Australians and Aboriginal and Torres Strait Islander Peoples. The concordance index for the European Australians, Asian Australians, and Aboriginal and Torres Strait Islander Peoples subpopulations were 0.99 (0.98-0.99), 0.93 (0.92-0.94) and 0.92 (0.91-0.93), respectively. Similar findings were observed when validating P-cube using an external dataset [Scientific Registry of Transplant Recipient Registry (2006-2020)]. Six sub-categories of recipients with distinct risk factor profiles were identified. Some factors such as blood group compatibility were considered important across the entire transplant population. Other factors such as human leukocyte antigen (HLA)-DR mismatches were unique to older recipients. The P-cube model identifies allograft survival specific risk factors within a heterogenous population and offers personalized survival predictions in a diverse cohort.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Transplantados , Austrália/epidemiologia , Transplante Homólogo , Aloenxertos
11.
Sci Rep ; 13(1): 16367, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773250

RESUMO

Organ shortage is a major barrier in transplantation and rules guarding organ allocation decisions should be robust, transparent, ethical and fair. Whilst numerous allocation strategies have been proposed, it is often unrealistic to evaluate all of them in real-life settings. Hence, the capability of conducting simulations prior to deployment is important. Here, we developed a kidney allocation simulation framework (simKAP) that aims to evaluate the allocation process and the complex clinical decision-making process of organ acceptance in kidney transplantation. Our findings have shown that incorporation of both the clinical decision-making and a dynamic wait-listing process resulted in the best agreement between the actual and simulated data in almost all scenarios. Additionally, several hypothetical risk-based allocation strategies were generated, and we found that these strategies improved recipients' long-term post-transplant patient survival and reduced wait time for transplantation. The importance of simKAP lies in its ability for policymakers in any transplant community to evaluate any proposed allocation algorithm using in-silico simulation.


Assuntos
Transplante de Rim , Obtenção de Tecidos e Órgãos , Transplantes , Humanos , Rim , Tomada de Decisões , Doadores de Tecidos , Alocação de Recursos
12.
Front Psychol ; 14: 1159022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621932

RESUMO

Introduction: Outsourcing, one of the nonstandard employment forms, has been increasingly popular with a wide variety of industries and employers. However, much less is known about its consequences at the employee level, especially relative to standard-employed colleagues. Drawing on social categorization theory and the human resource architecture model, the study was to investigate how outsourced (vs. standard) employment form impacts employees' perceived insider status and then job performance, as well as the moderating role of job value status. Methods: To examine these effects, we collected two-wave and multi-source questionnaires from a sample of 147 outsourced employees, 279 standard employees, and their immediate supervisors. And interviews with 31 employees, their supervisors, and human resources personnel provided further support for our findings. Results: The results showed that relative to standard employees, outsourced employees were lower in perceived insider status and indirectly worse in job performance. Furthermore, both the comparative effects were stronger among core-status than peripheral-status employees. Discussion: Our study contributes to outsourcing and widely nonstandard employment literature, bringing the research focus from employers to outsourced employees' psychological and behavioral consequences. Also, we extended literature on the human resource architecture, through a deeper investigation on the issue of employment form-job value status (mis)matching as well as its impacts on employees.

13.
Biomolecules ; 13(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627252

RESUMO

Risk-factor-based scoring systems for atherosclerotic coronary artery disease (CAD) remain concerningly inaccurate at the level of the individual and would benefit from the addition of biomarkers that correlate with atherosclerosis burden directly. We hypothesized that serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) would be independently associated with CAD and investigated this in the BioHEART study using 968 participants with CT coronary angiograms, which were scored for disease burden in the form of coronary artery calcium scores (CACS), Gensini scores, and a semi-quantitative soft-plaque score (SPS). Serum sLOX-1 was assessed by ELISA and was incorporated into regression models for disease severity and incidence. We demonstrate that sLOX-1 is associated with an improvement in the prediction of CAD severity when scored by Gensini or SPS, but not CACS. sLOX-1 also significantly improved the prediction of the incidence of obstructive CAD, defined as stenosis in any vessel >75%. The predictive value of sLOX-1 was significantly greater in the subgroup of patients who did not have any of the standard modifiable cardiovascular risk factors (SMuRFs). sLOX-1 is associated with CAD severity and is the first biomarker shown to have utility for risk prediction in the SMuRFless population.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Angiografia Coronária , Artérias , Receptores Depuradores Classe E
14.
Clin Kidney J ; 16(7): 1170-1179, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398694

RESUMO

Background: Kidneys donated after circulatory death suffer a period of functional warm ischaemia before death, which may lead to early ischaemic injury. Effects of haemodynamic trajectories during the agonal phase on delayed graft function (DGF) is unknown. We aimed to predict the risk of DGF using patterns of trajectories of systolic blood pressure (SBP) declines in Maastricht category 3 kidney donors. Methods: We conducted a cohort study of all kidney transplant recipients in Australia who received kidneys from donation after circulatory death donors, divided into a derivation cohort (transplants between 9 April 2014 and 2 January 2018 [462 donors]) and a validation cohort (transplants between 6 January 2018 and 24 December 2019 [324 donors]). Patterns of SBP decline using latent class models were evaluated against the odds of DGF using a two-stage linear mixed effects model. Results: In the derivation cohort, 462 donors were included in the latent class analyses and 379 donors in the mixed effects model. Of the 696 eligible transplant recipients, 380 (54.6%) experienced DGF. Ten different trajectories, with distinct patterns of SBP decline were identified. Compared with recipients from donors with the slowest decline in SBP after withdrawal of cardiorespiratory support, the adjusted odds ratio (aOR) for DGF was 5.5 [95% confidence interval (CI) 1.38-28.0] for recipients from donors with a steeper decline and lowest SBP [mean 49.5 mmHg (standard deviation 12.5)] at the time of withdrawal. For every 1 mmHg/min reduction in the rate of decline of SBP, the respective aORs for DGF were 0.95 (95% CI 0.91-0.99) and 0.98 (95% CI 0.93-1.0) in the random forest and least absolute shrinkage and selection operator models. In the validation cohort, the respective aORs were 0.95 (95% CI 0.91-1.0) and 0.99 (95% CI 0.94-1.0). Conclusion: Trajectories of SBP decline and their determinants are predictive of DGF. These results support a trajectory-based assessment of haemodynamic changes in donors after circulatory death during the agonal phase for donor suitability and post-transplant outcomes.

16.
Nat Commun ; 14(1): 4272, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460600

RESUMO

The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allows researchers to investigate different cell states. The effective integration of multiple large-cohort studies promises biological insights into cells under different conditions that individual studies cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of atlas-scale multi-sample multi-condition single-cell studies. We have generalized scMerge2 to enable the merging of millions of cells from single-cell studies generated by various single-cell technologies. Using a large COVID-19 data collection with over five million cells from 1000+ individuals, we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-seq data integration from multiple cohorts and reveals signatures derived from cell-type expression that are more accurate in discriminating disease progression. Further, we demonstrate that scMerge2 can remove dataset variability in CyTOF, imaging mass cytometry and CITE-seq experiments, demonstrating its applicability to a broad spectrum of single-cell profiling technologies.


Assuntos
COVID-19 , Perfilação da Expressão Gênica , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Algoritmos , Sequenciamento do Exoma , Análise de Sequência de RNA/métodos
17.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314966

RESUMO

MOTIVATION: Recent advances in multimodal single-cell omics technologies enable multiple modalities of molecular attributes, such as gene expression, chromatin accessibility, and protein abundance, to be profiled simultaneously at a global level in individual cells. While the increasing availability of multiple data modalities is expected to provide a more accurate clustering and characterization of cells, the development of computational methods that are capable of extracting information embedded across data modalities is still in its infancy. RESULTS: We propose SnapCCESS for clustering cells by integrating data modalities in multimodal single-cell omics data using an unsupervised ensemble deep learning framework. By creating snapshots of embeddings of multimodality using variational autoencoders, SnapCCESS can be coupled with various clustering algorithms for generating consensus clustering of cells. We applied SnapCCESS with several clustering algorithms to various datasets generated from popular multimodal single-cell omics technologies. Our results demonstrate that SnapCCESS is effective and more efficient than conventional ensemble deep learning-based clustering methods and outperforms other state-of-the-art multimodal embedding generation methods in integrating data modalities for clustering cells. The improved clustering of cells from SnapCCESS will pave the way for more accurate characterization of cell identity and types, an essential step for various downstream analyses of multimodal single-cell omics data. AVAILABILITY AND IMPLEMENTATION: SnapCCESS is implemented as a Python package and is freely available from https://github.com/PYangLab/SnapCCESS under the open-source license of GPL-3. The data used in this study are publicly available (see section 'Data availability').


Assuntos
Aprendizado Profundo , Algoritmos , Análise por Conglomerados , Cromatina , Análise de Célula Única
18.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371497

RESUMO

The current coronary artery disease (CAD) risk scores for predicting future cardiovascular events rely on well-recognized traditional cardiovascular risk factors derived from a population level but often fail individuals, with up to 25% of first-time heart attack patients having no risk factors. Non-invasive imaging technology can directly measure coronary artery plaque burden. With an advanced lipidomic measurement methodology, for the first time, we aim to identify lipidomic biomarkers to enable intervention before cardiovascular events. With 994 participants from BioHEART-CT Discovery Cohort, we collected clinical data and performed high-performance liquid chromatography with mass spectrometry to determine concentrations of 683 plasma lipid species. Statin-naive participants were selected based on subclinical CAD (sCAD) categories as the analytical cohort (n = 580), with sCAD+ (n = 243) compared to sCAD- (n = 337). Through a machine learning approach, we built a lipid risk score (LRS) and compared the performance of the existing Framingham Risk Score (FRS) in predicting sCAD+. We obtained individual classifiability scores and determined Body Mass Index (BMI) as the modifying variable. FRS and LRS models achieved similar areas under the receiver operating characteristic curve (AUC) in predicting the validation cohort. LRS enhanced the prediction of sCAD+ in the healthy-weight group (BMI < 25 kg/m2), where FRS performed poorly and identified individuals at risk that FRS missed. Lipid features have strong potential as biomarkers to predict CAD plaque burden and can identify residual risk not captured by traditional risk factors/scores. LRS compliments FRS in prediction and has the most significant benefit in healthy-weight individuals.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Lipidômica , Angiografia Coronária/métodos , Medição de Risco , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Biomarcadores , Lipídeos
19.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292801

RESUMO

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.

20.
iScience ; 26(5): 106633, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192969

RESUMO

Cardiovascular disease remains a leading cause of mortality with an estimated half a billion people affected in 2019. However, detecting signals between specific pathophysiology and coronary plaque phenotypes using complex multi-omic discovery datasets remains challenging due to the diversity of individuals and their risk factors. Given the complex cohort heterogeneity present in those with coronary artery disease (CAD), we illustrate several different methods, both knowledge-guided and data-driven approaches, for identifying subcohorts of individuals with subclinical CAD and distinct metabolomic signatures. We then demonstrate that utilizing these subcohorts can improve the prediction of subclinical CAD and can facilitate the discovery of novel biomarkers of subclinical disease. Analyses acknowledging cohort heterogeneity through identifying and utilizing these subcohorts may be able to advance our understanding of CVD and provide more effective preventative treatments to reduce the burden of this disease in individuals and in society as a whole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA