Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(14): 4310-4320, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35369694

RESUMO

Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively. The adsorption isotherm model showed that the COPNs follow the Langmuir adsorption isotherm model and pseudo-second-order kinetics. Next, we explored the superhydrophobicity of the COPNs by in situ fabrication with melamine sponge (COPNs-MS), which incorporates the superhydrophobicity of COPNs [water contact angle (WCA) of >150°] with the structure and flexibility of the MS skeleton. The COPNs-MS shows various oil-adsorbing properties with good adsorption capacity (from 60 to 120 g/g) and also effectively separates various surfactant-stabilized emulsions with a separation efficiency of over 99%. The as-fabricated COPNs-MS retains its superhydrophobicity in various solvents and hazardous conditions (WCA ≥ 150°) and exhibits good flame retardancy and excellent compression properties with excellent antifouling property due to the superhydrophobic COPN coating. Furthermore, COPNs-MS also demonstrates excellent recyclability because the strong COPN coating in the MS skeleton retains its hydrophobicity. Therefore, our fluorine-free superhydrophobic COPNs are not only capable of selective dye adsorption but also exhibit very good oil adsorption and surfactant-stabilized emulsion separation performance.

2.
Carbohydr Polym ; 257: 117633, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541659

RESUMO

Shape memory polymer (SMP), composites and blends need to be prepared to improve the properties or obtain new functions of SMPs. In this work, we successfully prepared p-coumaric acid-modified water-soluble chitosan (M-Cs) and poly (vinyl alcohol) blended membrane (PVA/M-Cs) by a simple solution casting method to enhance its physico-chemical properties, including water-induced shape memory behavior. M-Cs were synthesized from native chitosan (Cs) using carbodiimide chemistry. After the addition of M-Cs into the PVA polymer matrix, it exhibited better water-induced shape memory behavior and shape recovery ratio reach nearly 100 %. Moreover, the water contact angle value declined after the addition of Cs or M-Cs in to the PVA polymer matrix. Based on these findings, the respective blended membranes will be able to broaden the applications of SMPs in many sectors, especially in the biomedical field, which requires water as the main stimulus.

3.
Int J Biol Macromol ; 171: 457-464, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33421474

RESUMO

In this study, ferulic acid-modified water soluble chitosan and poly (γ-glutamic acid) polyelectrolyte multilayers films were constructed through the layer-by-layer (LBL) self-assembly technique. Chitosan (CS) or ferulic acid modified chitosan (MCS) and Poly (γ-glutamic acid) (PGA) was alternately deposited on the surface of glass substrate for the enhancement of surface modification. The obtained films were characterized by Fourier transform spectroscopy (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and water contact angle to study its physico-chemical properties including protein absorption. The (PGA/MCS) films showed intense deposition of multilayers built upon the surface roughness and an increase in the exponential growth of multilayer films by UV-vis spectroscopy. Water contact angle indicated that the (PGA/MCS) films performed well with good wettability due to the increase in the number of layers. The LBL multilayer coatings of (PGA/MCS) films surface possessed a reduced amount of protein adsorption. These results indicated that it can resist the protein adsorption and can enhance the biocompatibility towards the biomedical application through the protein interaction. The (PGA/MCS) films has the potential to utilization as a good biomaterial for biomedical purposes to intensify the bio-active surface.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Ácidos Cumáricos/farmacologia , Polieletrólitos/química , Ácido Poliglutâmico/análogos & derivados , Adsorção , Técnicas de Química Analítica , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Microscopia Eletrônica de Varredura , Muramidase , Ácido Poliglutâmico/química , Soroalbumina Bovina , Solubilidade , Propriedades de Superfície , Água
4.
Biotechnol Bioeng ; 118(3): 1213-1223, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33289076

RESUMO

In this study, we prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded polyamidoamine (PAMAM) dendrimers conjugated with arginyl-glycyl-aspartic acid (RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). FA was released in greater extent (80%) from the outer layer of the dendrimers compared with PTX (70%) from the interior of the dendrimers. FA improved intracellular availability of PTX via P-gp modulation in drug-resistant cells. In vitro drug uptake data show higher PTX delivery with RGD-PAMAM-FP than with PAMAM-FP in drug resistant KB CH-R 8-5 cell lines. This indicates that RGD facilitates intracellular PTX accumulation through active targeting in multidrug-resistant KB CH-R 8-5 cells. The terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay data and membrane potential analysis in mitochondria confirm the enhanced anticancer potential of RGD-PAMAM-FP nanoaggregates in drug-resistant cells. We also confirmed by the increased protein levels of proapoptotic factors such as caspase 3, caspase 9, p53, and Bax after treatment with RGD-PAMAM-FP nanoaggregates and also downregulates antiapoptotic factors. Hence, FA-PTX co-loaded, RGD-functionalized PAMAM G4.5 dendrimers may be considered as an effective therapeutic strategy to induce apoptosis in P-gp-overexpressing, multidrug-resistant cells.


Assuntos
Ácidos Cumáricos , Dendrímeros , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias , Paclitaxel , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia
5.
Pharmaceutics ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182410

RESUMO

Maximizing the antitumor efficacy of doxorubicin (DOX) with a new drug delivery strategy is always desired in the field of biomedical science. Because the clinical applications of DOX in the treatment of cancer is limited by the side effects related to the dose. Herein, we report the co-loading of DOX and resveratrol (RESV) using an injectable in situ formed sodium deoxycholate hydrogel (Na-DOC-hyd) at the pH of the tumor extracellular microenvironment. The sequential, controlled, and sustained release of RESV and DOX for synergistic antitumor effects was confirmed by entrapping G4.5-DOX in the RESV-loaded Na-DOC hydrogel (Na-DOC-hyd-RESV). The synergistic antitumor activity of Na-DOC-hyd-RESV+G4.5-DOX was assessed on HeLa cell xenograft tumor in BALB/c nude mice. In the MTT biocompatibility assay, both the G4.5 PAMAM dendrimer and Na-DOC-hyd exhibited negligible cytotoxicity up to the highest dose of 2.0 mg mL-1 in HeLa, MDA-MB-231, and HaCaT cells. The release profiles of DOX and RESV from the Na-DOC-hyd-RESV+G4.5-DOX confirmed the relatively rapid release of RESV (70.43 ± 1.39%), followed by that of DOX (54.58 ± 0.62%) at pH 6.5 in the 7 days of drug release studies. A single intratumoral injection of Na-DOC-hyd-RESV+G4.5-DOX maximally suppressed tumor growth during the 28 days of the treatment period. Na-DOC-hyd-RESV+G4.5-DOX did not cause any histological damage in the major visceral organs. Therefore, this Na-DOC-hydrogel for dual drugs (DOX and RESV) delivery at the pH of the tumor extracellular microenvironment is a promising, safe, and effective combination for antitumor chemotherapy.

6.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172099

RESUMO

Hydrogels have been investigated as ideal biomaterials for wound treatment owing to their ability to form a highly moist environment which accelerates cell migration and tissue regeneration for prompt wound healing. They can also be used as a drug carrier for local delivery, and are able to activate immune cells to enhance wound healing. Here, we developed heparin-conjugated poly(N-isopropylacrylamide), an injectable, in situ gel-forming polymer, and evaluated its use in wound healing. Ibuprofen was encapsulated into the hydrogel to help reduce pain and excessive inflammation during healing. In addition to in vitro studies, a BALB/c mice model was used to evaluate its effect on would healing and the secretion of inflammatory mediators. The in vitro assay confirmed that the ibuprofen released from the hydrogel dramatically reduced lipopolysaccharide-induced inflammation by suppressing the production of NO, PGE2 and TNF-α in RAW264.7 macrophages. Moreover, an in vivo wound healing assay was conducted by applying hydrogels to wounds on the backs of mice. The results showed that the ibuprofen-loaded hydrogel improved healing relative to the phosphate buffered saline group. This study indicates that ibuprofen loaded in an injectable hydrogel is a promising candidate for wound healing therapy.

7.
Cell Prolif ; 53(12): e12946, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174655

RESUMO

There is a need to store very large numbers of conventional human pluripotent stem cell (hPSC) lines for their off-the-shelf usage in stem cell therapy. Therefore, it is valuable to generate "universal" or "hypoimmunogenic" hPSCs with gene-editing technology by knocking out or in immune-related genes. A few universal or hypoimmunogenic hPSC lines should be enough to store for their off-the-shelf usage. Here, we overview and discuss how to prepare universal or hypoimmunogenic hPSCs and their disadvantages. ß2-Microglobulin-knockout hPSCs did not harbour human leukocyte antigen (HLA)-expressing class I cells but rather activated natural killer (NK) cells. To avoid NK cell and macrophage activities, homozygous hPSCs expressing a single allele of an HLA class I molecule, such as HLA-C, were developed. Major HLA class I molecules were knocked out, and PD-L1, HLA-G and CD47 were knocked in hPSCs using CRISPR/Cas9 gene editing. These cells escaped activation of not only T cells but also NK cells and macrophages, generating universal hPSCs.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Células Matadoras Naturais/citologia , Células-Tronco Pluripotentes/citologia , Características da Família , Humanos , Transplante de Células-Tronco/métodos
8.
IET Nanobiotechnol ; 14(8): 654-661, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33108320

RESUMO

This work reports the isolation of the protein from the flour of an underutilised agro waste, a de-oiled cake of Madhuca latifolia using the bis (2-ethylehexyl) sodium sulfosuccinate salt reverse micelle and the characterisation of the protein through various techniques. The experimental conditions for the extraction were optimised using Box-Behnken design. The highest yield of the protein was achieved when the extraction parameters, i.e. KCl concentration, KCl amount, and pH of the medium, were 0.5 M, 1.25 ml, and 9.02, respectively. The experimental yield (75.56%) obtained under the optimised conditions matched extremely well with the predicted yield (75.19%). The analysis of the biochemical composition envisaged the occurrence of 2S albumin, 7S globulin, and 11S globulin as the major components in the protein. The X-ray diffraction pattern supported the ß-sheets structure of the protein. The imaging of the protein through a scanning electron microscope revealed the shape and surface of the protein to be spherical and smooth, respectively. Thus, the protein isolate of the de-oiled cake flour of Madhuca latifolia could be utilised towards food product development and relevant fields.


Assuntos
Farinha/análise , Madhuca/química , Óleos de Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Manipulação de Alimentos/métodos , Madhuca/metabolismo , Proteínas de Plantas/metabolismo
9.
J Mater Chem B ; 8(46): 10577-10585, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33124643

RESUMO

Cancer-initiating cells (CICs) or cancer stem cells (CSCs) are primarily responsible for tumor initiation, growth, and metastasis and represent a few percent of the total tumor cell population. We designed a membrane filtration protocol to enrich CICs (CSCs) from the LoVo colon cancer cell line via nylon mesh filter membranes with 11 and 20 µm pore sizes and poly(lactide-co-glycolic acid)/silk screen (PLGA/silk screen) porous membranes (pore sizes of 20-30 µm). The colon cancer cell solution was filtered through the membranes to obtain a permeate solution. Subsequently, the cell culture medium was filtered through the membranes to collect the recovery solution where the cells attached to the membranes were rinsed off into the recovery solution. Then, the membranes were cultivated in the cultivation medium to collect the migrated cells from the membranes. The cells migrated from any membrane had higher expression of the CSC surface markers CD44 and CD133, had higher colony formation levels, and produced more carcinoembryonic antigen (CEA) than the colon cancer cells cultivated on conventional tissue culture plates (control). We established a method to enrich the CICs (CSCs) of colon cancer cells from migrated cells through porous polymeric membranes by the membrane filtration protocol developed in this study.


Assuntos
Separação Celular/métodos , Neoplasias do Colo/patologia , Filtração/métodos , Membranas Artificiais , Células-Tronco Neoplásicas/citologia , Antígeno AC133/análise , Antígeno AC133/metabolismo , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Separação Celular/instrumentação , Filtração/instrumentação , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/metabolismo , Nylons/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Seda/química
10.
Mater Sci Eng C Mater Biol Appl ; 110: 110676, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204104

RESUMO

Obesity and type 2 diabetes have become serious health problems in 21st century. Development of non-invasive treatment to treat obesity and type-2 diabetes is still unmet needs. For targeting on this, one of the promising treatments is to implant an intestine sleeve in the gastrointestinal tract for limitation of food absorption. In this context, biodegradable polymer intestine sleeve was composed of polycaprolactone (PCL), poly-DL-lactic acid (PDLLA) and disk-shape nano-clay (Laponite®), and fabricated as an implantable device. Here, Laponite® as a rheological additive to improve the compatibility of PCL and PDLLA, and the polymers/clay composites were also evaluated by scanning electron microscopy SEM analysis and mechanical measurements. The mass ratio 90/10/1 of PCL/PDLLA/Laponite® composite was selected for fabrication of intestine sleeve, because of the highest toughness and flexibility, which are tensile strength of 91.9 N/mm2 and tensile strain of 448% at the failure point. The prepared intestine sleeve was implanted and deployed at the duodenum in type2 diabetic rats, providing significant benefits in control of the body weight and blood glucose, while compared with the non-implanted type 2 diabetic rats. More importantly, the food intake records and histopathological section reports presented that the implanted rats still have normal appetites and no noticeable acute symptoms of inflammation in the end of the test. These appreciable performances suggested the implantation of biocompatible polymer composites has a highly potential treatment for obesity and type 2 diabetes.


Assuntos
Argila/química , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Intestinos/cirurgia , Nanocompostos/química , Obesidade/terapia , Polímeros/química , Próteses e Implantes , Animais , Diabetes Mellitus Tipo 2/patologia , Intestinos/diagnóstico por imagem , Nanocompostos/ultraestrutura , Obesidade/patologia , Poliésteres/química , Implantação de Prótese , Ratos Sprague-Dawley , Resistência à Tração
11.
RSC Adv ; 10(35): 20682-20690, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517745

RESUMO

The use of nanomaterials for drug delivery offers many advantages including the targeted delivery of drugs and their controlled release. Nonetheless, entry into the target cells remains a challenge for many nanomaterials used for drug delivery. Moreover, cellular uptake limits the therapeutic efficiency of many anticancer drugs. An important goal is to increase the specific accumulation of these nanoparticles (NPs) at the desired cancerous tissues. Notably, cancer cells show a high demand for some amino acids and we have used this knowledge to develop novel carrier systems. In this study, drug carriers were produced by the conjugation of multiple amino acids such as l-histidine (H) and l-cysteine (C) or single amino acids such as only H with the G4.5 dendrimers (G) to produce GHC aggregates and GH NP carriers, respectively. Doxorubicin was loaded into the G4.5, GH, and GHC dendrimers (G/DOX, GH/DOX and GHC/DOX, respectively) and the release mechanism was demonstrated at pH 7.4 and pH 5.0. GH/DOX and GHC/DOX showed better stability under physiological conditions than the dendrimer alone (G/DOX). GH/DOX and GHC/DOX exhibited higher inhibition of HeLa cell proliferation in in vitro and in vivo studies in zebrafish, confirming the early release of DOX by disrupting the endosomal membrane and triggering the destabilization of carriers at a lower pH of 5.0.

12.
Colloids Surf B Biointerfaces ; 184: 110531, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590053

RESUMO

Iron oxide-based magnetic resonance imaging (MRI) contrast agents have negative contrast limitations in cancer diagnosis. Gadolinium (Gd)-based contrast agents show toxicity. To overcome these limitations, Gd-doped ferrite (Gd:Fe3O4 (GdIO) nanoparticles (NPs) were synthesized as T1-T2 dual-modal contrast agents for MRI-traced drug delivery. A theranostics GdIO encapsulated in a Generation 4.5 PAMAM dendrimer (G4.5-GdIO) was developed by alkaline coprecipitation. The drug-loading efficiency of the NPs was ∼24%. In the presence of a low-frequency alternating magnetic field (LFAMF), a maximum cumulative doxorubicin (DOX) release of ∼77.47% was achieved in a mildly acidic (pH = 5.0) simulated endosomal microenvironment. Relaxometric measurements indicated superior r1 (5.19 mM-1s-1) and r2 (26.13 mM-1s-1) for G4.5-GdIO relative to commercially available Gd-DTPA. Thus, G4.5-GdIO is promising as an alternative noninvasive MRI-traced cancer drug delivery system.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Nanopartículas/química , Poliaminas/química , Nanomedicina Teranóstica , Antibióticos Antineoplásicos/química , Cápsulas/síntese química , Cápsulas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Dendrímeros/síntese química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Gadolínio/química , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Tamanho da Partícula , Poliaminas/síntese química , Propriedades de Superfície
13.
Int J Biol Macromol ; 136: 661-667, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201915

RESUMO

In this study, we modified three different molecular weights of chitosan by using p-Coumaric acid (p-CA) for enhancing their water solubility and antioxidant property. The chemical and physical properties of all native chitosan and its modified products were determined by Fourier transform spectroscopy (FTIR), ninhydrin assay, Folin-Ciocalteu reagent procedure, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), high performance of liquid chromatography (HPLC), X-ray diffraction (XRD), water solubility and antioxidant property (both DPPH assay and reducing power assay). Results showed that the water solubility and antioxidant property of modified product decreases, when molecular weight of corresponding native chitosan increases. The obtained modified product had good solubility over a wide range of pH. Thermal analysis (TGA and DSC) showed the lower thermal stability of the modified product than that of corresponding native chitosan. XRD pattern revealed that the crystallinity was less in modified product than that of respective chitosan. The enhanced partially water solubility and antioxidant property of all modified chitosan products might be a great advantage, while applied in a wide range of applications in the form antioxidant property in food, biomedical and cosmetic industry.


Assuntos
Antioxidantes/química , Quitosana/química , Ácidos Cumáricos/química , Água/química , Aminoácidos/análise , Compostos de Bifenilo/química , Ferro/química , Peso Molecular , Oxirredução , Picratos/química , Solubilidade , Relação Estrutura-Atividade
14.
Adv Exp Med Biol ; 1077: 197-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357691

RESUMO

Hydrogels are three-dimensional hydrophilic polymeric networks that can be made from a wide range of natural and synthetic polymers. This review discusses recent advanced engineering methods to fabricate hydrogels for biomedical applications with emphasis in cardiac constructs and wound healing. Layer-by-Layer (LbL) assembly offers a tissue-engineered construct with robust and highly ordered structures for cell proliferation and differentiation. Three-dimensional printings, including inkjet printing, fused deposition modeling, and stereolithographic apparatus, have been widely employed to fabricate complex structures (e.g., heart valves). Moreover, the state-of-the-art design of intelligent/stimulus-responsive hydrogels can be used for a wide range of biomedical applications, including drug delivery, glucose delivery, shape memory, wound dressings, and so on. In the future, an increasing number of hydrogels with tunable mechanical properties and versatile functions will be developed for biomedical applications by employing advanced engineering techniques with novel material design.


Assuntos
Hidrogéis , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Valvas Cardíacas , Humanos , Polímeros , Impressão Tridimensional , Alicerces Teciduais
15.
Mater Sci Eng C Mater Biol Appl ; 66: 170-177, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207051

RESUMO

To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and cell-ECM adhesion was shown on day 7. The cell number was also increased on all of the crosslinked electrospun fibers. It seems that the PVA based electrospun hydrogel nanofibers prepared with post-crosslinking method can be used as scaffold for tissue engineering.


Assuntos
Alginatos/química , Nanofibras/química , Ácido Poliglutâmico/análogos & derivados , Álcool de Polivinil/química , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Glucurônico/química , Glutaral/química , Ácidos Hexurônicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Microscopia Eletrônica de Varredura , Nanofibras/toxicidade , Ácido Poliglutâmico/química , Termogravimetria
16.
Colloids Surf B Biointerfaces ; 142: 98-104, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938325

RESUMO

As layer-by-layer self-assembly deposition (LbL) is a versatile technique for surface modification, protein adsorption on the LbL modified glass is evaluated in this study. At the beginning, glass slides was silanized by 3-aminopropyltriethoxysilane (APTES). Sodium alginate (Alg), poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes and chitosan (CS) was used as the polycation electrolyte. Both polyanion and polycation electrolytes alternately deposited on the silanized glass slide surface by the LbL technique to get three different polyanion/chitosan series of LbL films ([Alg/CS], [PGA/CS], and [PAsp/CS]). Three kinds of kinetic model including pseudo-first-order, second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption of albumin on the three different polyanion/chitosan series of LbL films. It is found that the adsorption of albumin on the polyanion/chitosan series of LbL films can be described well with the pseudo-second-order kinetic mechanism. To make sure if the pseudo-second-order kinetic mechanism of protein adsorbed on the other polyanion/polycation LbL films is also suitable, poly(allylamine hydrochloride) (PAH) and poly(L-lysine) (PLL) are used as two other polycations. The [polyanion/PAH] and [polyanion/PLL] series of LbL films were prepared with the same LbL technique for albumin, fibrinogen, and fibronectin adsorption. From the results, it is found that albumin, fibrinogen, and fibronectin adsorption on the various polyanion/polycation LbL films can be described well with the pseudo-second-order kinetic mechanism. The protein adsorbed at equilibrium and rate constant of protein adsorbed on the various LbL films can be determined.


Assuntos
Alginatos/química , Quitosana/química , Fibrinogênio/química , Fibronectinas/química , Peptídeos/química , Ácido Poliglutâmico/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Cinética , Poliaminas/química , Polieletrólitos , Ácido Poliglutâmico/análogos & derivados , Polilisina/química , Propilaminas/química , Silanos/química
17.
Comput Biol Med ; 69: 134-43, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26773459

RESUMO

In this paper, a quantitative modeling and wound-healing analysis of fibroblast and human keratinocyte cells is presented. Our study was conducted using a continuous cellular impedance monitoring technique, dubbed Electric Cell-substrate Impedance Sensing (ECIS). In fact, we have constructed a mathematical model for quantitatively analyzing the cultured cell growth using the time series data directly derived by ECIS in a previous work. In this study, the applicability of our model into the keratinocyte cell growth modeling analysis was assessed first. In addition, an electrical "wound-healing" assay was used as a means to evaluate the healing process of keratinocyte cells at a variety of pressures. Two innovative and new-defined indicators, dubbed cell power and cell electroactivity, respectively, were developed for quantitatively characterizing the biophysical behavior of cells. We then employed the wavelet transform method to perform a multi-scale analysis so the cell power and cell electroactivity across multiple observational time scales may be captured. Numerical results indicated that our model can well fit the data measured from the keratinocyte cell culture for cell growth modeling analysis. Also, the results produced by our quantitative analysis showed that the wound healing process was the fastest at the negative pressure of 125mmHg, which consistently agreed with the qualitative analysis results reported in previous works.


Assuntos
Fibroblastos/metabolismo , Queratinócitos/metabolismo , Modelos Biológicos , Cicatrização/fisiologia , Células 3T3 , Animais , Impedância Elétrica , Humanos , Camundongos
18.
Mater Sci Eng C Mater Biol Appl ; 34: 140-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24268243

RESUMO

The surface of styrene-butadiene-styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO(-) and OCN on the three [CS/polyanion] systems are [CS/Alg]>[CS/PGA]>[CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82±8g/day·m(2). It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO(-) and OCN on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO(-) and OCN on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through these [CS/polyanion] membranes was also conducted. No bacterial transport was found.


Assuntos
Bandagens , Butadienos/química , Quitosana/química , Polímeros/química , Estireno/química , Ferimentos e Lesões/patologia , Células 3T3 , Adsorção , Alginatos/química , Animais , Anti-Infecciosos/farmacologia , Adesão Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibronectinas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Membranas Artificiais , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/química , Polieletrólitos , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Água/química
19.
Biosens Bioelectron ; 33(1): 196-203, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22261483

RESUMO

In this paper, a study of computational modeling and multi-scale analysis in cell dynamics is presented. Our study aims at: (1) deriving and validating a mathematical model for cell growth, and (2) quantitatively detecting and analyzing the biological interdependencies across multiple observational scales with a variety of time and frequency resolutions. This research was conducted using the time series data practically measured from a novel on-line cell monitoring technique, referred to as electric cell-substrate impedance sensing (ECIS), which allows continuously tracking the cellular behavior such as adhesion, proliferation, spreading and micromotion. First, comparing our ECIS-based cellular growth modeling analysis results with those determined by hematocytometer measurement using different time intervals, we found that the results obtained from both experimental methods consistently agreed. However, our study demonstrated that it is much easier and more convenient to operate with the ECIS system for on-line cellular growth monitoring. Secondly, for multi-scale analysis our results showed that the proposed wavelet-based methodology can effectively quantify the fluctuations associated with cell micromotions and quantitatively capture the biological interdependencies across multiple observational scales. Note that although the wavelet method is well known, its application into the ECIS time series analysis is novel and unprecedented in computational cell biology. Our analyses indicated that the proposed study on ECIS time series could provide a hopeful start and great potentials in both modeling and elucidating the complex mechanisms of cell biological systems.


Assuntos
Técnicas Biossensoriais/métodos , Proliferação de Células , Células 3T3 , Animais , Movimento Celular , Simulação por Computador , Impedância Elétrica , Camundongos
20.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1578-87, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364963

RESUMO

Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates.


Assuntos
Butadienos/administração & dosagem , Butadienos/química , Polímeros/administração & dosagem , Polímeros/química , Estireno/administração & dosagem , Estireno/química , Ferimentos e Lesões/tratamento farmacológico , Células 3T3 , Absorção , Adsorção , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bandagens , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Membranas Artificiais , Camundongos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA