Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132536, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777021

RESUMO

The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker with a boric acid molecule (SPBA) from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.

2.
Int J Biol Macromol ; 270(Pt 1): 132028, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704066

RESUMO

Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.

3.
Mol Neurobiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427215

RESUMO

Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.

4.
Aging (Albany NY) ; 16(2): 1374-1389, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295303

RESUMO

A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.


Assuntos
Doença de Alzheimer , Condicionamento Físico Animal , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células de Kupffer/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Camundongos Transgênicos , Oxirredução , Condicionamento Físico Animal/fisiologia
5.
Life Sci ; 331: 122042, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634815

RESUMO

AIMS: Memory impairment is a major clinical manifestation in Alzheimer's disease (AD) patients, while regular exercise may prevent and delay degenerative changes in memory functions, and our aim is to explore the influence and molecular mechanisms of aerobic exercise on the early stages of Alzheimer's disease. MAIN METHODS: 3-month-old male APP/PS1 transgenic AD mice and C57BL/6J wild-type mice were randomly divided into four groups: wild-type and APP/PS1 mice with sedentary (WT-SED, AD-SED), and running (WT-RUN, AD-RUN) for 12-weeks. The spatial learning and memory function, RNA-sequencing, spine density, synaptic associated protein, mRNA and protein expression involved in G protein-coupled receptor 81 (GPR81) signaling pathway, and complement factors in brain were measured. KEY FINDINGS: Aerobic exercise improved spatial learning and memory in APP/PS1 mice, potentially attributed to increased dendritic spine density. Subsequently, potential underlying mechanisms were identified through RNA sequencing: regular aerobic exercise could activate the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cAMP/PKA signaling pathway and upregulate synaptic function-related proteins to promote synaptic growth, possibly by modulating GPR81. Notably, regular aerobic exercise inhibited microglial activation, reversed the microglial phenotype, reduced the production of initiation factor C1q and central factor C3 in the complement cascade in the brain, prevented the colocalization of microglia and PSD-95, and thus prevented synaptic loss. SIGNIFICANCE: Physical exercise could play a critical role in improving cognitive function in AD by promoting synaptic growth and preventing synaptic loss, which may be related to the regulation of the GPR81/cAMP/PKA signaling pathway and inhibition of complement-mediated microglial phagocytosis of synapses.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Masculino , Animais , Lactente , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Proteínas do Sistema Complemento , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homeostase , Modelos Animais de Doenças , Hipocampo/metabolismo , Presenilina-1
6.
Mol Neurobiol ; 60(12): 6852-6868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37507575

RESUMO

Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aß) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/patologia , Colesterol/metabolismo
7.
Nutrients ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235786

RESUMO

Neuroinflammation occurs throughout the pathogenesis of Alzheimer's disease (AD). Here, we investigated the effects of treadmill exercise on neuroinflammation in APP/PS1 transgenic AD mice and the potential involvement of microbe-gut-brain axis (MGB) mechanisms based on growing evidence that AD's pathogenesis is correlated with a deterioration in the function of gut microbiota. APP/PS1 transgenic AD mice were subjected to 12 weeks of treadmill exercise, followed by spatial memory tests. After the behavioral study, the amyloid (Aß) pathology, gut microbes and metabolites, bacterial lipopolysaccharide (LPS) displacement, and degree of neuroinflammation were analyzed. We found that this strategy of exercise enriched gut microbial diversity and alleviated neuroinflammation in the brain. Notably, exercise led to reductions in pathogenic bacteria such as intestinal Allobaculum, increases in probiotic bacteria such as Akkermansia, increased levels of intestine-brain barrier proteins, and attenuated LPS displacement. These results suggest that prolonged exercise can effectively modulate gut microbes and the intestinal barrier and thereby reduce LPS displacement and ultimately alleviate AD-related neuroinflammation.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias
8.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077318

RESUMO

Abnormalities in autophagy are associated with Alzheimer's disease (AD)-like lesions. Studies have shown that exercise can significantly improve AD autophagy abnormalities, but the mechanism underlying this phenomenon remains unclear. APN not only has an important regulatory effect on AD autophagy abnormalities, but also is affected by exercise. Therefore, this study aims to reveal the pathway by which exercise regulates abnormal autophagy in AD using the APN-AdipoR1 signaling pathway as an entry point. The results of the study showed that APP/PS1 double transgenic AD model mice (24 weeks) showed decreased AdipoR1 levels in the brain, abnormal autophagy, increased Aß deposition, and increased cell apoptosis, and dendritic spines and cognitive function were reduced. Twelve weeks of aerobic exercise enhanced lysosomes and alleviated abnormal autophagy by activating the AdipoR1/AMPK/TFEB signaling pathway in the brains of AD mice, thereby alleviating Aß deposition and its associated AD-like abnormalities. These findings suggest that the AdipoR1 plays an important role in aerobic exercise's alleviation of abnormal autophagy in AD brain cells and alleviation of AD-like lesions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
9.
J Hazard Mater ; 417: 126115, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020349

RESUMO

The ultra-selective extraction of thorium ions (Th(IV)) from lanthanides is of significance to both solve the radioactive pollution issue in rare earth (RE) production and sustainably provide thorium fuel for the liquid fluoride thorium reactors (LFTR). However, it remains a great challenge. Here, we reported an oxygen-rich microporous carbon for ultra-selective extraction of Th(IV) from rare earth elements (REEs) in a wide pH range. This selectivity was derived from the synergy of the oxygen-rich nature, microporous structure of the carbons, the chemical valence, and the ionic size of Th(IV) species. This oxygen-rich microporous carbon presented an ultra-high distribution coefficient (Kd) of 1.15 × 108 mL g-1 for Th(IV) at pH 4.9 in the presence of 15 REEs and revealed outstanding performance for Th(IV) extraction from three simulated RE solutions with high ionic strength of lanthanides. Meanwhile, an exceptional adsorption capacity of 624.98 mg g-1 was obtained in the single Th(IV) solution. Both values were superior to those of reported adsorbents. More importantly, the new adsorbent developed here could be prepared from cigarette butts. These features ensured the oxygen-rich carbon as a promising and cost-effective adsorbent for high-purity thorium extraction from REEs.

10.
Eur J Pediatr ; 176(2): 253-260, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28074279

RESUMO

The aim of this study was to investigate the pathological classifications, clinical features, and natural history of pediatric cardiac tumors to provide a basis for the selection of an appropriate therapeutic method. The medical records of in- or outpatients with cardiac tumors at four hospitals were classified to analyze various types of tumor growth locations, clinical manifestations, surgical indications, and long-term follow-up results. There were 166 patients, including 158 with primary cardiac tumors, six with metastatic cardiac tumors, and two with unclassified cardiac tumors. Among the 158 cases of primary cardiac tumor, 150 were benign and eight were malignant. The rhabdomyoma, fibroma, and myxoma are the most common types of benign cardiac tumors. The major clinical manifestations of cardiac tumors include outflow tract obstruction, arrhythmia, dyspnea, pericardial effusion, heart failure, and seizures. Among the 59 patients who underwent surgery, 49 had primary benign cardiac tumors, eight had primary malignant tumors, and two had malignant metastatic tumors. Post-surgery, nine of the patients had residual tumor tissues that did not significantly affect their hemodynamics. Following surgery, there were two cases of recurrence and nine deaths, including four of benign and five of malignant tumors with mortality rates of 8.2 and 50.0 %, respectively. Of the remaining 107 cases of patients who did not undergo surgery, five (4.7 %) died. CONCLUSION: The primary benign cardiac tumors are the predominant pediatric cardiac tumors, of which rhabdomyoma, fibroma, and myxoma are the most common types. If severe symptoms are nonexistent and the hemodynamics is unaffected, most of the patients can survive in the long term despite the tumors. What is known: • Pediatric cardiac tumors are rare and are predominantly primary and benign. • The symptoms of heart failure, arrhythmia, and outflow obstruction are the most severe complications of cardiac tumors. What is new: • The rhabdomyoma, fibroma, and myxoma are the most common types of primary benign cardiac tumors. • If severe symptoms are not present and the hemodynamics are unaffected, most of the patients can survive in the long term despite the tumors.


Assuntos
Fibroma/diagnóstico , Neoplasias Cardíacas/diagnóstico , Mixoma/diagnóstico , Rabdomioma/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Fibroma/epidemiologia , Fibroma/cirurgia , Seguimentos , Neoplasias Cardíacas/epidemiologia , Neoplasias Cardíacas/cirurgia , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Mixoma/epidemiologia , Mixoma/cirurgia , Estudos Retrospectivos , Rabdomioma/epidemiologia , Rabdomioma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA