Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518553

RESUMO

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Assuntos
Escherichia coli , Glucose , Manose , Manose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Glucose/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Manosefosfatos/metabolismo , Engenharia Metabólica , Frutosefosfatos/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Manose-6-Fosfato Isomerase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Glicólise
2.
J Sci Food Agric ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436580

RESUMO

BACKGROUND: Isomaltulose is a 'generally recognized as safe' ingredient and is widely used in the food, pharmaceutical and chemical industries. The exploration and development of efficient technologies is essential for enhancing isomaltulose yield. RESULTS: In the present study, a simple and efficient surface display platform mediated by a non-yeast signal peptide was developed in Yarrowia lipolytica and utilized to efficiently produce isomaltulose from sucrose. We discovered that the signal peptide SP1 of sucrose isomerase from Pantoea dispersa UQ68J (PdSI) could guide SIs anchoring to the cell surface of Y. lipolytica, demonstrating a novel and simple cell surface display strategy. Furthermore, the PdSI expression level was significantly increased through optimizing the promoters and multi-site integrating genes into chromosome. The final strain gained 451.7 g L-1 isomaltulose with a conversion rate of 90.3% and a space-time yield of 50.2 g L-1 h-1 . CONCLUSION: The present study provides an efficient way for manufacturing isomaltulose with a high space-time yield. This heterogenous signal peptide-mediated cell surface display strategy featured with small fusion tag (approximately 2.2 kDa of SP1), absence of enzyme leakage in fermentation broth and ample room for optimization, providing a convenient way to construct whole-cell biocatalysts to synthesize other products and broadening the array of molecular toolboxes accessible for engineering Y. lipolytica. © 2024 Society of Chemical Industry.

3.
NPJ Microgravity ; 10(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233425

RESUMO

The elevation in the optic nerve sheath (ONS) pressure (ONSP) due to microgravity-induced headward fluid shift is the primary hypothesized contributor to SANS. This longitudinal study aims to quantify the axial plane of the optic nerve subarachnoid space area (ONSSA), which is filled with cerebrospinal fluid (CSF) and expands with elevated ONSP during and after head-down tilt (HDT) bed rest (BR). 36 healthy male volunteers (72 eyes) underwent a 90-day strict 6° HDT BR. Without obtaining the pre-HDT data, measurements were performed on days 30, 60, and 90 during HDT and at 6 recovery time points extended to 180-days (R + 180) in a supine position. Portable B-scan ultrasound was performed using the 12 MHz linear array probe binocularly. The measurements of the ONS and the calculation of the ONSSA were performed with ImageJ 1.51 analysis software by two experienced observers in a masked manner. Compared to R + 180, the ONSSA on HDT30, HDT60, and HDT90 exhibited a consistently significant distention of 0.44 mm2 (95% CI: 0.13 to 0.76 mm2, P = 0.001), 0.45 mm2 (95% CI: 0.15 to 0.75 mm2, P = 0.001), and 0.46 mm2 (95% CI: 0.15 to 0.76 mm2, P < 0.001), respectively, and recovered immediately after HDT on R + 2. Such small changes in the ONSSA were below the lateral resolution limit of ultrasound (0.4 mm) and may not be clinically relevant, possibly due to ONS hysteresis causing persistent ONS distension. Future research can explore advanced quantitative portable ultrasound-based techniques and establish comparisons containing the pre-HDT measurements to deepen our understanding of SANS.

4.
Small ; 20(7): e2303502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840447

RESUMO

Borophene, a promising material with potential applications in electronics, energy storage, and sensors, is successfully grown as a monolayer on Ag(111), Cu(111), and Au(111) surfaces using molecular beam epitaxy. The growth of two-dimensional borophene on Ag(111) and Au(111) is proposed to occur via surface adsorption and boron segregation, respectively. However, the growth mode of borophene on Cu(111) remains unclear. To elucidate this, scanning tunneling microscopy in conjunction with theoretical calculations is used to study the phase transformation of boron nanostructures under post-annealing treatments. Results show that by elevating the substrate temperature, boron nanostructures undergo an evolution from amorphous boron to striped-phase borophene (η = 1/6) adhering to the Cu ⟨ 1 1 ¯ 0 ⟩ $\langle {1\bar{1}0} \rangle $ step edge, and finally to irregularly shaped ß-type borophene (η = 5/36) either on the substrate surface or embedded in the topmost Cu layer. dI/dV spectra recorded near the borophene/Cu lateral interfaces indicate that the striped-phase borophene is a metastable phase, requiring more buckling and electron transfer to stabilize the crystal structure. These findings offer not only an in-depth comprehension of the ß-type borophene formation on Cu(111), but also hold potential for enabling borophene synthesis on weakly-binding semiconducting or insulating substrates with 1D active defects.

5.
Acta Pharm Sin B ; 13(12): 5091-5106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045037

RESUMO

Despite exciting achievements with some malignancies, immunotherapy for hypoimmunogenic cancers, especially glioblastoma (GBM), remains a formidable clinical challenge. Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response. Herein, we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the "danger" signal of GBM. We demonstrated the feasibility of this strategy in two scenarios of GBM. In the first scenario, we showed that this simultaneous amplification system, in conjunction with local chemotherapy, enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model; thus, ultimately making a cold GBM hot and suppressing postoperative relapse. Encouraged by excellent efficacy, we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM, a disease with limited clinical treatment options. In general, this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractory malignancies.

6.
Front Oncol ; 13: 1322403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107067

RESUMO

Acute myeloid leukemia (AML) is a malignant disease of myeloid hematopoietic stem/progenitor cells characterized by the abnormal proliferation of primitive and naive random cells in the bone marrow and peripheral blood. Acute promyelocytic leukemia (APL) is a type (AML-M3) of AML. Most patients with APL have the characteristic chromosomal translocation t(15; 17)(q22; q12), forming PML::RARA fusion. The occurrence and progression of AML are often accompanied by the emergence of gene fusions such as PML::RARA, CBFß::MYH11, and RUNX1::RUNX1T1, among others. Gene fusions are the main molecular biological abnormalities in acute leukemia, and all fusion genes act as crucial oncogenic factors in leukemia. Herein, we report the first case of LYN::LINC01900 fusion transcript in AML with a promyelocytic phenotype and TP53 mutation. Further studies should address whether new protein products may result from this fusion, as well as the biological function of these new products in disease occurrence and progression.

7.
Sci Bull (Beijing) ; 68(20): 2370-2381, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604722

RESUMO

Developing artificial "CO2-sugar" platforms is meaningful for addressing challenges posed by land scarcity and climate change to the supply of dietary sugar. However, upcycling CO2 into complex polyoxygenated carbohydrates involves several major challenges, including achieving enantioselective and thermodynamically driven transformation and expanding product repertoires while reducing energy consumption. We present a versatile chemoenzymatic roadmap based on aldol condensation, iso/epimerization, and dephosphorylation reactions for asymmetric CO2 and H2 assembly into sugars with perfect stereocontrol. In particular, we developed a minimum ATP consumption and the shortest pathway for bottom-up biosynthesis of the fundamental precursor, fructose-6-phosphate, which is valuable for synthesizing structure-diverse sugars and derivatives. Engineering bottleneck-associated enzyme catalysts aided in the thermodynamically driven synthesis of several energy-dense and functional hexoses, such as glucose and D-allulose, featuring higher titer (63 mmol L-1) and CO2-product conversion rates (25 mmol C L-1 h-1) compared to established in vitro CO2-fixing pathways. This chemical-biological platform demonstrated greater carbon conversion yield than the conventional "CO2-bioresource-sugar" process and could be easily extended to precisely synthesize other high-order sugars from CO2.


Assuntos
Dióxido de Carbono , Hexoses , Dióxido de Carbono/metabolismo , Hexoses/metabolismo , Glucose/metabolismo , Carboidratos , Açúcares
8.
Nat Commun ; 14(1): 4089, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429852

RESUMO

Kagome lattices of various transition metals are versatile platforms for achieving anomalous Hall effects, unconventional charge-density wave orders and quantum spin liquid phenomena due to the strong correlations, spin-orbit coupling and/or magnetic interactions involved in such a lattice. Here, we use laser-based angle-resolved photoemission spectroscopy in combination with density functional theory calculations to investigate the electronic structure of the newly discovered kagome superconductor CsTi3Bi5, which is isostructural to the AV3Sb5 (A = K, Rb or Cs) kagome superconductor family and possesses a two-dimensional kagome network of titanium. We directly observe a striking flat band derived from the local destructive interference of Bloch wave functions within the kagome lattice. In agreement with calculations, we identify type-II and type-III Dirac nodal lines and their momentum distribution in CsTi3Bi5 from the measured electronic structures. In addition, around the Brillouin zone centre, [Formula: see text] nontrivial topological surface states are also observed due to band inversion mediated by strong spin-orbit coupling.

10.
Front Bioeng Biotechnol ; 11: 1136473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926688

RESUMO

Although many microorganisms have been found to produce bioflocculants, and bioflocculants have been considered as attractive alternatives to chemical flocculants in wastewater treatment, there are few reports on bioflocculants from the safe strain C. glutamicum, and the application of bioflocculants in acid wastewater treatment is also rare attributed to the high content of metal ions and high acidity of the water. In this study, a novel bioflocculant produced by Corynebacterium glutamicum Cg1-P30 was investigated. An optimal production of this bioflocculant with a yield of 0.52 g/L was achieved by Box-Behnken design, using 12.20 g/L glucose, 4.00 g/L corn steep liquor and 3.60 g/L urea as carbon and nitrogen source. The structural characterization revealed that the bioflocculant was mainly composed of 37.50% neutral sugar, 10.03% uronic acid, 6.32% aminosugar and 16.51% protein. Carboxyl, amine and hydroxyl groups were the functional groups in flocculation. The biofocculant was thermally stable and dependent on metal ions and acidic pH, showing a good flocculating activity of 91.92% at the dosage of 25 mg/L by aid of 1.0 mM Fe3+ at pH 2.0. Due to these unique properties, the bioflocculant could efficiently remove metal ions such as Fe, Al, Zn, and Pb from the real acid mine wastewater sample without pH adjustment, and meanwhile made the acid mine wastewater solution become clear with an increased neutral pH. These findings suggested the great potential application of the non-toxic bioflocculant from C. glutamicum Cg1-P30 in acid mine wastewater treatment.

11.
J Food Sci ; 88(4): 1224-1236, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36815593

RESUMO

Husks are the main source of bran and furfural flavor in traditional Chinese light-aroma Baijiu, but they negatively affect its smell and taste. Here, bran husks were replaced with fresh bamboo to brew light-aroma Baijiu. Flavor components in Jiupei and Baijiu were detected through headspace solid-phase microextraction with gas chromatography-mass spectrometry, and physicochemical properties were assessed; flavor results were obtained from correlation, principal component, and cluster analyses. Starch and reducing sugar content in Jiupei negatively correlated with moisture, alcohol content, and acidity. Fresh bamboo reduced furfural from bran husks in Jiupei by 88.5% and increased alcohol distillation by 51%; it also improved starch efficiency (5%). Surprisingly, isovanillin was found to be present in Baijiu. Total Baijiu yield (57% ± 2.01%) was attained when crushed bamboo size was 1.5 cm × 0.3 cm × 0.3 cm. This study supports the use of fresh bamboo (an eco-friendly alternative for husks) in brewing light-aroma Baijiu. PRACTICAL APPLICATION: The use of fresh bamboo as a replacement for rice husks in brewing light-aroma Baijiu was investigated. It attenuated the chaff taste in light-aroma Baijiu and increased the liquor yield. Surprisingly, isovanillin was also present in the base Baijiu, and it added to the fragrance. This study not only supports the use of bamboo as an auxiliary material for brewing light-aroma Baijiu but also provides a reference for brewing light-aroma Baijiu with alternative auxiliary materials.


Assuntos
Odorantes , Oryza , Odorantes/análise , Furaldeído , Bebidas Alcoólicas/análise
12.
IEEE Trans Cybern ; 53(2): 1106-1117, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398781

RESUMO

Unsupervised domain adaptation methods have been proposed to tackle the problem of covariate shift by minimizing the distribution discrepancy between the feature embeddings of source domain and target domain. However, the standard evaluation protocols assume that the conditional label distributions of the two domains are invariant, which is usually not consistent with the real-world scenarios such as long-tailed distribution of visual categories. In this article, the imbalanced domain adaptation (IDA) is formulated for a more realistic scenario where both label shift and covariate shift occur between the two domains. Theoretically, when label shift exists, aligning the marginal distributions may result in negative transfer. Therefore, a novel cluster-level discrepancy minimization (CDM) is developed. CDM proposes cross-domain similarity learning to learn tight and discriminative clusters, which are utilized for both feature-level and distribution-level discrepancy minimization, palliating the negative effect of label shift during domain transfer. Theoretical justifications further demonstrate that CDM minimizes the target risk in a progressive manner. To corroborate the effectiveness of CDM, we propose two evaluation protocols according to the real-world situation and benchmark existing domain adaptation approaches. Extensive experiments demonstrate that negative transfer does occur due to label shift, while our approach achieves significant improvement on imbalanced datasets, including Office-31, Image-CLEF, and Office-Home.

13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(12): 1311-1314, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36567589

RESUMO

OBJECTIVE: To explore the value of critical ultrasound in evaluating the fluid responsiveness of small dose volume challenge in patients with septic shock. METHODS: Thirty-six patients with septic shock admitted to the Third People's Hospital of Datong from January 2021 to December 2021 were enrolled, and the patients were randomly divided into control group and observation group, with 18 patients in each group. The control group was treated with traditional fluid challenge (500 mL of crystalloid injected within 30 minutes); the observation group received a small dose fluid challenge (100 mL of crystalloid injected within 1 minute). The hemodynamic indexes [central venous pressure (CVP), invasive mean arterial pressure (MAP), velocity-time integra (VTI)] and bilateral lung ultrasound scores were measured by critical ultrasound in both groups. The outcome related indicators of patients in the two groups were observed. The correlation between the above indexes and the fluid challenge was evaluated. RESULTS: Compared with the control group, the heart rate (HR) and CVP of patients in the observation group after the challenge were significantly lower than those in the control group [HR (times/min): 99.74±3.22 vs. 107.65±3.14, CVP (mmHg, 1 mmHg ≈ 0.133 kPa): 7.55±0.22 vs. 10.26±0.52, both P < 0.05], invasive MAP and VTI were significantly higher than those in the control group [invasive MAP (mmHg): 77.36±2.14 vs. 69.81±2.56, VTI (cm/s): 68.85±1.26 vs. 44.71±1.28, both P < 0.05]. The ultrasonic score of the observation group was significantly better than those of the control group (all P < 0.05). In terms of outcome, the length of intensive care unit (ICU) stay, mechanical ventilation time and the time for urine volume more than 0.5 mL×kg-1×h-1 of the observation group were significantly shorter than those in the control group [the length of ICU stay (hours): 138.26±1.25 vs. 205.73±1.26, mechanical ventilation time (hours): 36.80±0.25 vs. 47.65±0.36, time to reach urine volume more than 0.5 mL×kg-1×h-1 (hours): 27.38±1.25 vs. 38.61±1.30, all P < 0.05], The dosage of norepinephrine was significantly decreased in the observation group compared with the control group (mg: 45.26±1.85 vs. 53.73±1.92, P < 0.05), and the amount of resuscitation crystalloid was significantly reduced compared with the control group (mL: 1 532.62±12.38 vs. 1 755.52 ± 12.30, P < 0.05). Correlation analysis showed that the volume of crystalloid was highly consistent with M-BLUE pulmonary ultrasound (zone 2, 4 and 5), mechanical ventilation time, norepinephrine dose, time to reach the standard of urine volume and ΔVTI (all P < 0.05). CONCLUSIONS: Small dose fluid challenge evaluated by critical ultrasound in septic shock patients has a high value for fluid responsiveness, which can better reduce the risk of obvious tissue edema caused by fluid overload, organ damage and even life-threatening, make fluid challenge more reasonable and appropriate, thereby improving the success of treatment.


Assuntos
Choque Séptico , Humanos , Choque Séptico/tratamento farmacológico , Hidratação , Pressão Arterial , Hemodinâmica , Norepinefrina
14.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365514

RESUMO

This paper selected three kinds of AC-20 hot-mix recycled asphalt mixtures with high RAP content (30%, 40%, and 50%). It obtains a mixture of different degrees of miscibility by changing RAP preheating temperatures and mixing temperatures. The calculation formula of the degree of blending (DOB) of RAP asphalt interface recycling is proposed. The DSR test quantitatively characterized the DOB mixture's low temperature, and fatigue properties were tested by beam bending test and four-point bending fatigue test. The prediction models of the recycled mixture's low temperature and fatigue properties were proposed. The RAP preheating temperature is the most critical factor that dominates both transfers of RAP asphalt to the surface of new aggregate and the effective blending of old and new asphalt. DOB has a significant great influence on low-temperature performance and fatigue performance. The DOB of recycled asphalt can be improved by adjusting and optimizing the process parameters of plant hot recycled mixture to effectively improve the recycled mixture's low-temperature crack resistance and fatigue lifetime. The optimal RAP dosage and mixing process of required performance can be obtained based on the prediction models to save experimental time and cost.

15.
iScience ; 25(10): 105222, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36248741

RESUMO

Mogrosides are widely served as natural zero-calorie sweeteners. To date, the biosynthesis of high-intensity sweetness mogrosides V from mogrol has not been achieved because of inefficient and uncontrollable multi-glycosylation process. To address this challenge, we reported three UDP-glycosyltransferases (UGTs) catalyzing the primary and branched glycosylation of mogrosides and increased the catalytic efficiency by 74-400-folds toward branched glycosylation using an activity-based sequence conservative analysis engineering strategy. The computational studies provided insights into the origin of improved catalytic activity. By virtue of UGT mutants, we provided regio- and bond-controllable multi-glycosylation routes, successfully facilitating sequential glycosylation of mogrol to three kinds of mogroside V in excellent yield of 91-99%. Meanwhile, the feasibility of the routes was confirmed in engineered yeasts. It suggested that the multi-glycosylation routes would be combined with mogrol synthetic pathway to de novo produce mogrosides from glucose by aid of metabolic engineering and synthetic biology strategies in the future.

16.
Nat Commun ; 13(1): 3582, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739124

RESUMO

Naturally, haloacid dehalogenase superfamily phosphatases have been evolved with broad substrate promiscuity; however, strong specificity to a particular substrate is required for developing thermodynamically driven routes for manufacturing sugars. How to alter the intrinsic substrate promiscuity of phosphatases and fit the "one enzyme-one substrate" model remains a challenge. Herein, we report the structure-guided engineering of a phosphatase, and successfully provide variants with tailor-made preference for three widespread phosphorylated sugars, namely, glucose 6-phosphate, fructose 6-phosphate, and mannose 6-phosphate, while simultaneously enhancement in catalytic efficiency. A 12000-fold switch from unfavorite substrate to dedicated one is generated. Molecular dynamics simulations reveal the origin of improved activity and substrate specificity. Furthermore, we develop four coordinated multienzyme systems and accomplish the conversion of inexpensive sucrose and starch to fructose and mannose in excellent yield of 94-96%. This innovative sugar-biosynthesis strategy overcomes the reaction equilibrium of isomerization and provides the promise of high-yield manufacturing of other monosaccharides and polyols.


Assuntos
Monoéster Fosfórico Hidrolases , Açúcares , Frutose , Cinética , Manose , Fosfatos , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Termodinâmica
17.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009530

RESUMO

China's highway asphalt pavement has entered the stage of major repair, and improving the utilization rate of recycled asphalt pavement (RAP) is the main issue. The key link affecting the performance of recycled asphalt mixtures is the regeneration of aged asphalt, and the effect of the regenerant dosing on the high-temperature performance and viscosity of aged asphalt is the main content to be studied in this research. The aging behavior of asphalt seriously affects the roadworthiness of asphalt mixtures. In this study, we investigated the effect of changes in the microscopic properties of the aged asphalt on its viscosity properties during regeneration using gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) as well as Brinell viscosity tests. This study simulated asphalt aging by the RTFOT test, and then we obtained an aged asphalt with a needle penetration of 30. We prepared different regenerated asphalts by adding regeneration agent with doses of 2%, 4%, and 6% to the aged asphalt. The results showed that the regeneration agent could effectively reduce the viscosity of the aged asphalt, which can play a positive role in improving the construction and ease of the aged asphalt. Rejuvenation agents affected the aging asphalt sulfoxide and carbon group indices. Moreover, rejuvenation agents can also significantly reduce the intensities of their characteristic functional group indices. The results of the AFM test showed that the increase in the dose of regeneration agent increased the number of the asphalt bee-like structures and decreased the area of individual bee-like structures. The results of the GPC test were consistent with the results of the AFM test, and the increase in the dose of regeneration agent reduced the asphalt macromolecule content. The viscosity properties and microstructure of the aged asphalt changed positively after the addition of the regeneration agent, indicating that the regeneration agent had a degrading and diluting effect on macromolecules.

18.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4311-4328, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699691

RESUMO

Affected by the rapid population growth, the unbalanced level of social and economic development, the aging population and unhealthy eating patterns, we are facing problems such as lack of food and nutrition, and the high incidence of nutrition related diseases. At the same time, the demand for low-carbon development calls for a sustainable food supply model. Therefore, technologies that meet the taste and nutritional needs of consumers, and serve as a green and sustainable food supply model, such as functional sugar, alternative meat and other future food technologies, have attracted increasing attention. The rapidly developed emerging biomanufacturing technology and its products will support the development of a green and low-carbon future food industry and trigger profound changes in the traditional production mode. Collectively, this represents a major strategic development direction of the emerging bioeconomy. This review summarizes the biomanufacturing technology of functional sugars, microbial proteins and key auxiliary ingredients of alternative meat. We discuss the latest progress in cell factory construction, strain evaluation and process optimization in industrial environment and derived product development. Moreover, future development trend was prospected, with the aim to facilitate industrial development of biomanufacturing of future food.


Assuntos
Carbono , Carne , Meio Ambiente
19.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615394

RESUMO

The advent of graphene opens up the research into two-dimensional (2D) materials, which are considered revolutionary materials. Due to its unique geometric structure, graphene exhibits a series of exotic physical and chemical properties. In addition, single-element-based 2D materials (Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, germanene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth, fifth, and sixth main groups. The current methods to prepare monolayers or few-layer 2D materials include epitaxy growth, mechanical exfoliation, and liquid phase exfoliation. Although two Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic methods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial design and synthesis. Focusing on elemental 2D materials, this review mainly summarizes the recently reported work about tuning the electronic, optical, mechanical, and chemical properties of Xenes via surface modifications, achieved using controllable approaches (doping, adsorption, strain, intercalation, phase transition, etc.) to broaden their applications in various fields, including spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines. These advances in the surface modification of Xenes have laid a theoretical and experimental foundation for the development of 2D materials and their practical applications in diverse fields.

20.
Biochem Biophys Res Commun ; 579: 54-61, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34587555

RESUMO

1,2-ß-Mannobiose phosphorylases (1,2-ß-MBPs) from glycoside hydrolase 130 (GH130) family are important bio-catalysts in glycochemistry applications owing to their ability in synthesizing oligomannans. Here, we report the crystal structure of a thermostable 1,2-ß-MBP from Thermoanaerobacter sp. X-514 termed Teth514_1789 to reveal the molecular basis of its higher thermostability and mechanism of action. We also solved the enzyme complexes of mannose, mannose-1-phosphate (M1P) and 1,4-ß-mannobiose to manifest the enzyme-substrate interaction networks of three main subsites. Notably, a Zn ion that should be derived from crystallization buffer was found in the active site and coordinates the phosphate moiety of M1P. Nonetheless, this Zn-coordination should reflect an inhibitory status as supplementing Zn severely impairs the enzyme activity. These results indicate that the effects of metal ions should be taken into consideration when applying Teth514_1789 and other related enzymes. Based on the structure, a reliable model of Teth514_1788 that shares 61.7% sequence identity to Teth514_1789 but displays a different substrate preference was built. Analyzing the structural features of these two closely related enzymes, we hypothesized that the length of a loop fragment that covers the entrance of the catalytic center might regulate the substrate selectivity. In conclusion, these information provide in-depth understanding of GH130 1,2-ß-MBPs and should serve as an important guidance for enzyme engineering for further applications.


Assuntos
Thermoanaerobacter/enzimologia , beta-Manosidase/química , Sítios de Ligação , Catálise , Domínio Catalítico , Glicosídeo Hidrolases/química , Íons , Ligantes , Mananas/química , Manose/química , Manosefosfatos/química , Fosforilases/química , Plasmídeos/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes , Eletricidade Estática , Temperatura , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA