RESUMO
mRNA neoantigen cancer vaccine inducing neoantigen-specific T cell responses holds great promise for cancer immunotherapy; however, its clinical translation remains challenging because of suboptimal neoantigen prediction accuracy and low delivery efficiency, which compromise the in vivo therapeutic efficacy. We present a lipopolyplex (LPP)-formulated mRNA cancer vaccine encoding tandem neoantigens as a cancer therapeutic regimen. The LPP-formulated mRNA vaccines elicited robust neoantigen-specific CD8+ T cell responses in three syngeneic murine tumor models (CT26, MC38, and B16F10) to suppress tumor growth. Prophylactic cancer vaccine treatment completely prevented tumor development, and long-lasting memory T cells protected mice from tumor cell rechallenge. Combining the vaccine with immune checkpoint inhibitor further boosted the antitumor activity. Of note, LPP-based personalized cancer vaccine was administered in two cancer patients and induced meaningful neoantigen-specific T cell and clinical responses. In conclusion, we demonstrated that the LPP-based mRNA vaccine can elicit strong antitumor immune responses, and the results support further clinical evaluation of the therapeutic mRNA cancer vaccine.
Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Vacinas Anticâncer/imunologia , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Humanos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Feminino , Vacinas de mRNA/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Linfócitos T/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
INTRODUCTION: Candida auris is a globally disseminated invasive ascomycetous yeast, that imposes a substantial burden on healthcare systems. It has been documented to have spread to over 40 countries across six continents, necessitating in-depth comprehension through advanced techniques like Whole-Genome Sequencing. METHOD: This study entailed the isolation and Whole-Genome Sequencing of a fluconazole-resistant C. auris strain (CA01) obtained from a patient's blood in Beijing. Genome analysis was conducted to classify the strain, and molecular docking was performed to understand the impact of mutations on drug resistance. RESULTS: Genome analysis revealed that CA01 belongs to the South Asia Clade (I) and shares the closest genetic relationship with previously reported strains BJCA001 and BJCA002. Notably, unlike BJCA001, CA01 exhibits significant resistance to fluconazole primarily due to the A395T mutation in the ERG11 gene. Molecular docking studies demonstrated that this mutation leads to geometric changes in the active site where fluconazole binds, resulting in decreased binding affinity. Additionally, the present findings have identified several core virulence genes in C. auris, such as RBF1. DISCUSSION: The findings from this study expand the understanding of the genetic diversity and adaptive mechanisms of C. auris within the South Asia Clade (I). The observed fluconazole resistance driven by the ERG11 mutation A395T highlights the need for heightened awareness and adaptation in clinical treatment strategies in China. This study provides critical insights into drug resistance and virulence profiles at a genetic level, which could guide future therapeutic and management strategies for C. auris infections.
Assuntos
Antifúngicos , Candida auris , Farmacorresistência Fúngica , Fluconazol , Humanos , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Virulência/genética , Candida auris/genética , Candida auris/efeitos dos fármacos , Candida auris/patogenicidade , Testes de Sensibilidade Microbiana , Mutação , Pequim , Simulação de Acoplamento Molecular , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Sequenciamento Completo do Genoma , Ásia MeridionalRESUMO
Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72 h for obtaining the results. In healthcare facilities, the global distribution of vancomycin-resistant Enterococcus fecium (VRE) infections underscores the importance of rapidly determining VRE isolates. Here, we developed an integrated antimicrobial resistance (AMR) screening strategy by combining matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) with machine learning to rapidly predict VRE from clinical samples. Over 400 VRE and vancomycin-susceptible E. faecium (VSE) isolates were analyzed using MALDI-MS at different culture times, and a comprehensive dataset comprising 2388 mass spectra was generated. Algorithms including the support vector machine (SVM), SVM with L1-norm, logistic regression, and multilayer perceptron (MLP) were utilized to train the classification model. Validation on a panel of clinical samples (external patients) resulted in a prediction accuracy of 78.07%, 80.26%, 78.95%, and 80.54% for each algorithm, respectively, all with an AUROC above 0.80. Furthermore, a total of 33 mass regions were recognized as influential features and elucidated, contributing to the differences between VRE and VSE through the Shapley value and accuracy, while tandem mass spectrometry was employed to identify the specific peaks among them. Certain ribosomal proteins, such as A0A133N352 and R2Q455, were tentatively identified. Overall, the integration of machine learning with MALDI-MS has enabled the rapid determination of bacterial antibiotic resistance, greatly expediting the usage of appropriate antibiotics.
Assuntos
Antibacterianos , Aprendizado de Máquina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Testes de Sensibilidade Microbiana , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Máquina de Vetores de Suporte , Farmacorresistência BacterianaRESUMO
BACKGROUND: Skeletal muscle development and fat deposition have important effects on meat quality. The study of regulating skeletal muscle development and fat deposition is of great significance in improving the quality of carcass and meat. In the present study, whole transcriptome sequencing (including RNA-Seq and miRNA-Seq) was performed on the longissimus dorsi muscle (LDM) of Jinfen White pigs at 1, 90, and 180 days of age. RESULTS: The results showed that a total of 245 differentially expressed miRNAs were screened in any two comparisons, which may be involved in the regulation of myogenesis. Among them, compared with 1-day-old group, miR-22-5p was significantly up-regulated in 90-day-old group and 180-day-old group. Functional studies demonstrated that miR-22-5p inhibited the proliferation and differentiation of porcine skeletal muscle satellite cells (PSCs). Pearson correlation coefficient analysis showed that long non-coding RNA (lncRNA) LOC106505926 and CXXC5 gene had strong negative correlations with miR-22-5p. The LOC106505926 and CXXC5 were proven to promote the proliferation and differentiation of PSCs, as opposed to miR-22-5p. In terms of mechanism, LOC106505926 functions as a molecular sponge of miR-22-5p to modulate the expression of CXXC5, thereby inhibits the differentiation of PSCs. In addition, LOC106505926 regulates the differentiation of porcine preadipocytes through direct binding with FASN. CONCLUSIONS: Collectively, our results highlight the multifaceted regulatory role of LOC106505926 in controlling skeletal muscle and adipose tissue development in pigs and provide new targets for improving the quality of livestock products by regulating skeletal muscle development and fat deposition.
Assuntos
Diferenciação Celular , Lipogênese , MicroRNAs , Desenvolvimento Muscular , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Desenvolvimento Muscular/genética , Suínos , MicroRNAs/genética , MicroRNAs/metabolismo , Lipogênese/genética , Diferenciação Celular/genética , Proliferação de Células , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Células CultivadasRESUMO
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Imunoterapia , Imunidade , Microambiente TumoralRESUMO
To investigate the molecular characteristics and biofilm-forming ability of 116 Enterococcus faecium (Efm) and 72 Enterococcus faecalis (Efs) isolates obtained from patients with bloodstream infections (BSI) at a Chinese hospital between July 2011 and March 2018. The presence of glycopeptide resistance genes and five virulence genes (esp, gelE, asa1, hyl, and cylA) was screened using two multiplex PCR. MLST was used to assess the clonality. Crystal violet staining was used to detect biofilms. Vancomycin resistance was detected in 30.1% of Efm and 2.8% of Efs isolates, respectively. All VRE strains carried the vanA gene. The esp, gelE, asa1, and cylA genes in 72 Efs strains were detected at 62.5%, 84.7%, 84.7%, and 69.4%, respectively. Among the 116 Efm isolates, 74.1% and 25.8% carried esp and hyl, respectively. The esp gene was significantly associated with vancomycin-resistant Efm (VREfm) compared to vancomycin-susceptible Efm (VSEfm). In total, 91.7% of Efs and 20.0% of Efm produced biofilms. Twenty-six STs were identified among the 72 Efs isolates, with ST4 (29.2%) being the predominant. In total, 116 Efm strains were grouped into 26 STs, with ST78 (46.6%) being the predominant. Both VREfm (41.7%) and VSEfm (48.8%) were dominant in ST78. There is no clear evidence suggesting that some STs are associated with vancomycin resistance or biofilm formation. Both Efm and Efs BSI isolates showed a polyclonal pattern with a dominant clone and many unique types, implying the coexistence of clonal dissemination and an influx of new clones. The horizontal transmission of resistance genes may play a more important role in VREfm prevalence than clonal expansion.
RESUMO
In recent years, optical analog computing has experienced rapid development, among which optical differential operation has attracted great attention. Here, based on the unique optical properties of graphene, we propose an electrically tunable optical spatial differentiation by introducing a graphene layer at a quartz substrate. It is found that the output light field is sensitive to the graphene layer near the Brewster angle for small polarization output at the graphene-quartz substrate interface and can be modulated by changing the Fermi energy of graphene. In this case, the result of the optical differential operation can be dynamically regulated. Almost strict one-dimensional differential operations in different directions and almost perfect two-dimensional differential operations can be achieved. In addition, two-dimensional edge detection with different degrees of distortion in different directions can also be realized when applied to image processing. This new modulation method may provide more possibilities for tunable image edge detection and provide a potential way for developing more versatile optical simulators in the future.
RESUMO
Bacteria use quorum sensing (QS) to coordinate group behavior in response to cell density, and some bacterial viruses (phages) also respond to QS. In Staphylococcus aureus, the agr-encoded QS system relies on accumulation of auto-inducing cyclic peptides (AIPs). Other staphylococci also produce AIPs of which many inhibit S. aureus agr. We show that agr induction reduces expression of tarM, encoding a glycosyltransferase responsible for α-N-acetylglucosamine modification of the major S. aureus phage receptor, the wall teichoic acids. This allows lytic phage Stab20 and related phages to infect and kill S. aureus. However, in mixed communities, producers of inhibitory AIPs like S. haemolyticus, S. caprae, and S. pseudintermedius inhibit S. aureus agr, thereby impeding phage infection. Our results demonstrate that cross-species interactions dramatically impact phage susceptibility. These interactions likely influence microbial ecology and impact the efficacy of phages in medical and biotechnological applications such as phage therapy.
Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Bacteriófagos/metabolismo , Staphylococcus/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de QuorumRESUMO
To strengthen the antitumor efficacy and avoid toxicity to normal cells of cisplatin and triptolide, herein, an acid and glutathione (GSH) dual-controlled nanoplatform for enhanced cancer treatment through the synergy of both "1+1" apoptosis and "1+1" ferroptosis is designed. Remarkably, ZIF8 in response to tumor microenvironment enhances drug targeting and protects drugs from premature degradation. Meanwhile, the PtIV center can be easily reduced to cisplatin because of the large amount of GSH, thus liberating the triptolide as the coordinated ligand. The released cisplatin and hemin in turn boost the tumor cell "1+1" apoptosis through chemotherapy and photodynamic therapy, respectively. Furthermore, GSH reduction through PtIV weakens the activation of glutathione peroxidase 4 (GPX4) effectively. The released triptolide can inhibit the expressions of GSH by regulating nuclear factor E2 related factor 2 (Nrf2), further promoting membrane lipid peroxidation, thus "1+1" ferroptosis can be achieved. Both in vitro and in vivo results demonstrate that the nanosystem can not only perform superior specificity and therapeutic outcomes but also reduce the toxicity to normal cells/tissues of cisplatin and triptolide effectively. Overall, the prodrug-based smart system provides an efficient therapeutic strategy for cancer treatment by virtue of the effect of enhanced "1+1" apoptosis and "1+1" ferroptosis therapies.
Assuntos
Neoplasias da Mama , Diterpenos , Pró-Fármacos , Humanos , Feminino , Cisplatino/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pró-Fármacos/farmacologia , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
The diagnosis of pulmonary nocardiosis remains challenging. Rapid detection of Nocardia is of primary importance for early diagnosis and precise treatment of nocardiosis. In this study, our objective was to develop and validate a new TaqMan real-time PCR (qPCR) assay for rapidly detecting Nocardia spp. in respiratory samples. Based on published sequence data, primers in a conserved region of the 16S rRNA gene and a probe within that region that was specific for Nocardia were designed. The distinction effect of the qPCR assay was assessed between Nocardia and other respiratory-associated bacteria. Furthermore, the specificity and sensitivity of the assay were evaluated in respiratory clinical samples (n = 205), compared to the results of 16S rRNA gene amplicon sequencing and clinical diagnosis. The qPCR assay exhibited high specificity, sensitivity, repeatability, and reproducibility. The limit of detection of standard plasmid DNA was 3 × 102 copies/mL. Additionally, the qPCR assay was applied to the direct detection of 205 clinical respiratory samples. The specificity and sensitivity of the qPCR were all 100% compared to 16S rRNA gene amplicon sequencing, as well as 98.4% and 100% compared to clinical diagnosis respectively. The qPCR yielded results within 3 h of sample processing, compared to several days for culture, significantly reducing turnaround time. The results suggest that the new qPCR assay developed in this study provides reliable and rapid detection of Nocardia spp. in the respiratory tracts and is expected to reduce the time required for diagnosing and treating nocardiosis.
Assuntos
Nocardiose , Nocardia , Humanos , Nocardia/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Escarro/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Líquido da Lavagem Broncoalveolar/microbiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Nocardiose/diagnóstico , Nocardiose/microbiologiaRESUMO
Listeria monocytogenes is an important foodborne pathogen. It can adhere to food or food contact surface for a long time and form biofilm, which will lead to equipment damage, food deterioration, and even human diseases. As the main form of bacteria to survive, the mixed biofilms often exhibit higher resistance to disinfectants and antibiotics, including the mixed biofilms formed by L. monocytogenes and other bacteria. However, the structure and interspecific interaction of the mixed biofilms are very complex. It remains to be explored what role the mixed biofilm could play in the food industry. In this review, we summarized the formation and influence factors of the mixed biofilm developed by L. monocytogenes and other bacteria, as well as the interspecific interactions and the novel control measures in recent years. Moreover, the future control strategies are prospected, in order to provide theoretical basis and reference for the research of the mixed biofilms and the targeted control measures.
RESUMO
Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-ß-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.
RESUMO
Various optical differential computing devices have been designed, which have advantages of high speed and low power consumption compared with traditional digital computing. In this paper, considering the reflection of a light beam through a three-layer structure composed of glass, metal and air, we propose a designable optical differential operation based on surface plasmon resonance (SPR). When the SPR is excited under certain conditions, the spin-dependent splitting in the photonic spin Hall effect (SHE) changes dramatically. We first prove theoretically that this three-layer structure can realize one-dimensional optical differential operation. By discussing the transverse beam displacement under different conditions, it is found that the designable differential operation with high sensitivity can be realized by slightly adjusting the incident angle and the thickness of metal film. We design the differentiator which can obtain the image of measured target edge in real time and get different edge effects at different times. This will provide more possible applications for autonomous driving and target recognition.
RESUMO
Severely hypoxic condition of tumour represents a notable obstacle against the efficiency of photodynamic therapy (PDT). While mitochondria targeted therapy by metformin has been considered as a promising strategy for reducing oxygen consumption in tumours, its low treatment sensitivity, short half-life and narrow absorption window in vivo remain the intractable challenges. In this report, 5'-guanosine monophosphate (5'GMP), indocyanine green (ICG), hemin and metformin, were combined to construct a smart G-quadruplex (G4) hydrogel named HMI@GEL for breast cancer (BC) treatment. Benefiting from the photothermal (PTT) effect of ICG, HMI@GEL exhibited excellent characteristics of NIR-light-triggered and persistent drug delivery to maintain high intratumoral concentration of metformin. Furthermore, drug loading concentration of metformin reached an amazing 300 âmg âmL-1 in HMI@GEL. To our knowledge, it might be the highest loading efficiency in the reported literatures. With the combination of catalase-mimicking Hemin@mil88, metformin could inhibit tumour mitochondrial respiratory significantly, which sequentially permitted in situ efficient oxygen generation. Remarkable apoptosis and necrosis were achieved by the combination of PTT and synergistically enhanced PDT as well as the activated tumour immunotherapy. Collectively, the HMI@GEL in situ injectable platform showed a promising strategy for enhanced PDT by metformin, and opened new perspectives for treating BC versatilely.
RESUMO
Impaired immunomodulatory capacity and oxidative stress are the key factors limiting the effectiveness of mesenchymal stem cell transplantation therapy. The present study was aimed to investigate the effects of jujuboside A (JuA) on the protective effect and immunomodulatory capacity of human umbilical cord mesenchymal stem cells (hUC-MSCs). Hydrogen peroxide was used to establish an oxidative damage model of hUC-MSCs, while PBMCs isolated from rats were used to evaluate the effect of JuA pre-treatment on the immunomodulatory capacity of hUC-MSCs. Furthermore, Hoechst 33258 staining, lactate dehydrogenase test, measurement of malondialdehyde, Western blot, high-performance liquid chromatography; and flow cytometry were performed. Our results indicated that JuA (25 µmol·L-1) promoted the proliferation of hUC-MSCs, but did not affect the differentiating capability of these cells. JuA pre-treatment inhibited apoptosis, prevented oxidative damage, and up-regulated the protein expression of nuclear factor-erythroid factor 2-related factor 2 and heme oxygenase 1 in hUC-MSCs in which oxidative stress was induced with H2O2. In addition, JuA pre-treatment enhanced the inhibitory effect of hUC-MSCs against abnormally activated PBMCs, which was related to stimulation of the expression and activity of indoleamine 2,3-dioxygenase. In conclusion, our results demonstrate that JuA pre-treatment can enhance the survival and immunomodulatory ability through pathways related to oxidative stress, providing a new option for the improvement of hUC-MSCs in the clinical setting.
Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Diferenciação Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Ratos , Saponinas , Cordão Umbilical/metabolismoRESUMO
Pomelo seed as a by-product from pomelo consumption is rich in bioactive compounds, however, a huge volume of pomelo seed was disposed as wastes, the comprehensive utilization of pomelo seed could not only generate valued-added products/ingredients, but also decrease the environmental pollution. In this study, the main active substance limonin in pomelo seed was considered as a high-value bioactive compound. The purification of limonin from pomelo seed was investigated, and the neuroprotective and mechanism were characterized. The UPLC-MS/MS results indicated that 29 compounds in pomelo seed were identified, including 14 flavonoids, 3 limonids, 9 phenols and 3 coumarins. Moreover, high purity of limonin was obtained by crystallization and preparative-HPLC. Furthermore, limonin pretreatment can antagonize the cell damage mediated by Aß25-35 in a concentration-dependent relationship. The regulation of Bax/Bcl-2, expression of caspase-3 protein and the activation of PI3K/Akt signaling pathway were observed in the cells pretreated with limonin. Treatment of PC12 cells with PI3K inhibitor LY294002 weakened the protective effect of limonin. These results indicated that limonin prevented Aß25-35-induced neurotoxicity by activating PI3K/Akt, and further inhibiting caspase-3 and up-regulating Bcl-2. This study enables comprehensive utilization of pomelo seed as by-product and offers a theoretical principle for a waste-to-wealth solution, such as potential health benefits of food ingredient and drug.