Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
Nano Lett ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747348

RESUMO

Two-dimensional semiconductor materials with vertical dipoles are promising photocatalysts as vertical dipoles not only promote the electron-hole separation but also enhance the carrier redox ability. However, the influence of vertical dipoles on carrier recombination in such materials, especially the competing relationship between vertical dipoles and band gaps, is not yet clear. Herein, first-principles calculations and nonadiabatic molecular dynamics simulations were combined to clarify the influence of band gap and vertical dipole on the carrier lifetime in Janus MoSSe monolayer. By comparing with the results of MoS2 and MoSe2 as well as exploring the carrier lifetime of MoSSe under strain regulation, it has been demonstrated that the vertical dipole, rather than the band gap, is the dominant factor affecting the carrier lifetime. Strikingly, a linear relationship between the carrier lifetime and vertical dipole is revealed. These findings have important implications for the design of high-performance photocatalysts and optoelectronic devices.

2.
Chem Sci ; 15(18): 6916-6923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725518

RESUMO

Two-dimensional (2D) nonmagnetic semiconductors with large Rashba-Dresselhaus (R-D) spin splitting at valence or conduction bands are attractive for magnetic-field-free spintronic applications. However, so far, the number of 2D R-D inorganic semiconductors has been quite limited, and the factors that determine R-D spin splitting as well as rational design of giant spin splitting, remain unclear. For this purpose, by exploiting 2D chiral metal-organic frameworks (CMOFs) as a platform, we theoretically develop a three-step screening method to obtain a series of candidate 2D R-D semiconductors with valence band spin splitting up to 97.2 meV and corresponding R-D coupling constants up to 1.37 eV Å. Interestingly, the valence band spin texture is reversible by flipping the chirality of CMOFs. Furthermore, five keys for obtaining giant R-D spin splitting in 2D CMOFs are successfully identified: (i) chirality, (ii) large spin-orbit coupling, (iii) narrow band gap, (iv) valence and conduction bands having the same symmetry at the Γ point, and (v) strong ligand field.

3.
J Phys Chem Lett ; : 5643-5653, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767198

RESUMO

The understanding of the reaction mechanism of CO2 electroreduction (CO2RR) is essential for the precise design of catalysts for specific products with high selectivity. In this work, combined with the computational hydrogen electrode model and kinetic energy barrier calculations, CO2RR pathways on Cu(100) and Al1Cu3(100) are intensively investigated. The free energy barrier of the rate-determining step of ethylene formation is reduced from 1.08 eV for *CCOH formation on Cu(100) to 0.51 eV for *CH2OCHOH formation on Al1Cu3(100) and enhances the catalytic activity. The reaction free energy of *CO-*CO coupling is remarkably reduced from 0.86 eV on Cu(100) to -0.43 eV on Al1Cu3(100) and the coupling barrier is reduced from 0.97 to 0.37 eV, suppressing the production of gas phase CO and enhancing the production of C2 products. Furthermore, the selectivity toward C-O breaking of *CH2CHOH on Cu(100) and *CH2CH2OH on Al1Cu3(100) ensures high selectivity toward ethene rather than ethanol.

4.
J Phys Chem Lett ; 15(18): 5016-5023, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38695756

RESUMO

The pursuit of efficient photocatalysts toward photocatalytic water splitting has attracted wide attention. However, the low efficiency of photocatalytic reactions due to the rapid electron-hole recombination and the time-consuming searching process hinder the development of high-performance photocatalysts. Here, we proposed a data-driven screening procedure for covalent organic frameworks (COFs) as overall solar water-splitting photocatalysts. Based on a COF database through assembling different Cores and Linkers, three COFs are predicted to be efficient photocatalysts for overall solar water splitting after high-throughput computational screening. We found that the photogenerated electrons and holes are well separated on single COF photocatalysts without material engineering, and both hydrogen and oxygen evolution reactions can occur spontaneously on the three screened COFs under visible light radiation. This kind of novel COF screened by a data-driven screening procedure offers new perspectives for advancing efficient photocatalysts.

5.
Adv Mater ; : e2311926, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703354

RESUMO

Traditional lithium-ion battery (LIB) anodes, whether intercalation-type like graphite or alloying-type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi-metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion-alloying hybrid lithium storage mechanism. Results unveil that during the charge-discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi-components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g-1 at 0.1 A g-1; while, maintaining a stable output of 116 mA h g-1 after 10 000 cycles at 20 A g-1. It also demonstrates remarkable low-temperature performance, retaining 987 mA h g-1 even after 600 cycles at -40 °C. When employed in full cells, a high specific energy of 562 Wh kg-1 is achieved, rivalling many state-of-the-art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

6.
Nat Commun ; 15(1): 2969, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582766

RESUMO

Artificial electronic kagome lattices may emerge from electronic potential landscapes using customized structures with exotic supersymmetries, benefiting from the confinement of Shockley surface-state electrons on coinage metals, which offers a flexible approach to realizing intriguing quantum phases of matter that are highly desired but scarce in available kagome materials. Here, we devise a general strategy to construct varieties of electronic kagome lattices by utilizing the on-surface synthesis of halogen hydrogen-bonded organic frameworks (XHOFs). As a proof of concept, we demonstrate three XHOFs on Ag(111) and Au(111) surfaces, which correspondingly deliver regular, breathing, and chiral breathing diatomic-kagome lattices with patterned potential landscapes, showing evident topological edge states at the interfaces. The combination of scanning tunnelling microscopy and noncontact atomic force microscopy, complemented by density functional theory and tight-binding calculations, directly substantiates our method as a reliable and effective way to achieve electronic kagome lattices for engineering quantum states.

7.
J Phys Chem Lett ; 15(15): 4218-4223, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38602298

RESUMO

Two-dimensional (2D) ferroelectric metals (FEMs) possess intriguing characteristics, such as unconventional superconductivity and the nonlinear anomalous Hall effect. However, their occurrence is exceedingly rare due to mutual repulsion between ferroelectricity and metallicity. In addition, further incorporating other features like ferromagnetism into FEMs to enhance their functionalities poses a significantly greater challenge. Here, via first-principles calculations, we demonstrate a case of an FEM that features a coexistence of room-temperature ferromagnetism, ferroelectricity, and metallicity in a thermodynamically stable 2D Os2Se3. It presents a vertical electric polarization of 3.00 pC/m that exceeds those of most FEMs and a moderate polarization switching barrier of 0.22 eV per formula unit. Moreover, 2D Os2Se3 exhibits robust ferromagnetism (Curie temperature TC ≈ 527 K) and a sizable magnetic anisotropy energy (-30.87 meV per formula unit). Furthermore, highly magnetization-dependent electrical conductivity is revealed, indicative of strong magnetoelectric coupling. Berry curvature calculation suggests that the FEM might exhibit nontrivial band topology.

8.
iScience ; 27(5): 109599, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646178

RESUMO

Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.

9.
Nano Lett ; 24(15): 4433-4438, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564276

RESUMO

Twisted bilayer graphene (TBG) has the natural merits of tunable flat bands and localized states distributed as a triangular lattice. However, the application of this state remains obscure. By density functional theory (DFT) and pz orbital tight-binding model calculations, we investigate the tip-shaped electrostatic potential of top valence electrons of TBG at half filling. Adsorption energy scanning of molecules above the TBG reveals that this tip efficiently attracts molecules selectively to AA-stacked or AB-stacked regions. Tip shapes can be controlled by their underlying electronic structure, with electrons of low bandwidth exhibiting a more localized feature. Our results indicate that TBG tips offer applications in noninvasive and nonpolluting measurements in scanning probe microscopy and theoretical guidance for 2D material-based probes.

10.
NPJ Biofilms Microbiomes ; 10(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575604

RESUMO

Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.


Assuntos
GMP Cíclico/análogos & derivados , Lipopolissacarídeos , Mytilus , Animais , Larva/microbiologia , Larva/fisiologia , Metamorfose Biológica/genética , Mytilus/genética , Mytilus/microbiologia , Bactérias
11.
Nano Lett ; 24(17): 5317-5323, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635037

RESUMO

Exploring high-efficiency photocatalysts for selective CO2 reduction is still challenging because of the limited charge separation and surface reactions. In this study, a noble-metal-free metallic VSe2 nanosheet was incorporated on g-C3N4 to serve as an electron capture and transfer center, activating surface active sites for highly efficient and selective CO2 photoreduction. Quasi in situ X-ray photoelectron spectroscopy (XPS), soft X-ray absorption spectroscopy (sXAS), and femtosecond transient absorption spectroscopy (fs-TAS) unveiled that VSe2 could capture electrons, which are further transferred to the surface for activating active sites. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations revealed a kinetically feasible process for the formation of a key intermediate and confirmed the favorable production of CO on the VSe2/PCN (protonated C3N4) photocatalyst. As an outcome, the optimized VSe2/PCN composite achieved 97% selectivity for solar-light-driven CO2 conversion to CO with a high rate of 16.3 µmol·g-1·h-1, without any sacrificial reagent or photosensitizer. This work offers new insights into the photocatalyst design toward highly efficient and selective CO2 conversion.

12.
Nat Nanotechnol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448520

RESUMO

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

13.
Mar Genomics ; 74: 101082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485290

RESUMO

Bacteria of the genus Psychrobacter are widely distributed in the global low-temperature marine environment and have been studied for their effects on the settlement and metamorphosis of marine invertebrates. Psychrobacter cibarius AOSW16051 was isolated from the surface water samples of the Baltic Sea on the edge of the Arctic Ocean. Here, we present the complete genome of strain AOSW16051, which consists of a circular chromosome composed of 3,425,040 nucleotides with 42.98% G + C content and a circular plasmid composed of 5846 nucleotides with 38.66% G + C content. The genes predicted in this strain showed its strong outer membrane system, type VI secretion system and adhesion system. Trimeric autotransporter adhesins (TAAs) has been identified in the genome of P. cibarius AOSW16051, which has a variety of biological functions in interacting with host cells. However, there are no reports on TAAs in marine bacteria and aquatic pathogenic bacteria. By analyzing the genomic data, we can gain valuable insights to enhance our understanding of the physiological characteristics of P. cibarius, as well as the biological functions of TAAs and their role in triggering metamorphosis of invertebrate larvae.


Assuntos
Psychrobacter , Psychrobacter/genética , Sistemas de Secreção Tipo V/genética , Adesinas Bacterianas/genética , Nucleotídeos
14.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426819

RESUMO

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

15.
J Phys Chem A ; 128(10): 1925-1937, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430107

RESUMO

K-means clustering, as a classic unsupervised machine learning algorithm, is the key step to select the interpolation sampling points in interpolative separable density fitting (ISDF) decomposition for hybrid functional electronic structure calculations. Real-valued K-means clustering for accelerating the ISDF decomposition has been demonstrated for large-scale hybrid functional enabled ab initio molecular dynamics (hybrid AIMD) simulations within plane-wave basis sets where the Kohn-Sham orbitals are real-valued. However, it is unclear whether such K-means clustering works for complex-valued Kohn-Sham orbitals. Here, we propose an improved weight function defined as the sum of the square modulus of complex-valued Kohn-Sham orbitals in K-means clustering for hybrid AIMD simulations. Numerical results demonstrate that the K-means algorithm with a new weight function yields smoother and more delocalized interpolation sampling points, resulting in smoother energy potential, smaller energy drift, and longer time steps for hybrid AIMD simulations compared to the previous weight function used in the real-valued K-means algorithm. In particular, we find that this improved algorithm can obtain more accurate oxygen-oxygen radial distribution functions in liquid water molecules and a more accurate power spectrum in crystal silicon dioxide compared to the previous K-means algorithm. Finally, we describe a massively parallel implementation of this ISDF decomposition to accelerate large-scale complex-valued hybrid AIMD simulations containing thousands of atoms (2,744 atoms), which can scale up to 5,504 CPU cores on modern supercomputers.

16.
J Phys Chem A ; 128(10): 1913-1924, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38439159

RESUMO

Density functional perturbation theory (DFPT) is a crucial tool for accurately describing lattice dynamics. The adaptively compressed polarizability (ACP) method reduces the computational complexity of DFPT calculations from O(N4) to O(N3) by combining the interpolative separable density fitting (ISDF) algorithm. However, the conventional QR factorization with column pivoting (QRCP) algorithm, used for selecting the interpolation points in ISDF, not only incurs a high cubic-scaling computational cost, O(N3), but also leads to suboptimal convergence. This convergence issue is particularly pronounced when considering the complex interplay between the external potential and atomic displacement in ACP-based DFPT calculations. Here, we present a machine learning K-means clustering algorithm to select the interpolation points in ISDF, which offers a more efficient quadratic-scaling O(N2) alternative to the computationally intensive cubic-scaling O(N3) QRCP algorithm. We implement this efficient K-means-based ISDF algorithm to accelerate plane-wave DFPT calculations in KSSOLV, which is a MATLAB toolbox for performing Kohn-Sham density functional theory calculations within plane waves. We demonstrate that this K-means algorithm not only offers comparable accuracy to QRCP in ISDF but also achieves better convergence for ACP-based DFPT calculations. In particular, K-means can remarkably reduce the computational cost of selecting the interpolation points by nearly 2 orders of magnitude compared to QRCP in ISDF.

17.
J Phys Chem Lett ; 15(10): 2815-2824, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38441004

RESUMO

Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.

18.
Adv Mater ; : e2401171, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497304

RESUMO

Technologies that can simultaneously generate electricity and desalinate seawater are highly attractive and required to meet the increasing global demand for power and clean water. Here, a bifunctional solar evaporator that features continuous electric generation in seawater without salt accumulation is developed by rational design of polyelectrolyte hydrogel-functionalized photothermal sponge. This evaporator not only exhibits an unprecedentedly high water evaporation rate of 3.53 kg m-2 h-1along with 98.6% solar energy conversion efficiency but can also uninterruptedly deliver a voltage output of 0.972 V and a current density of 172.38 µA cm-2 in high-concentration brine over a prolonged period under one sun irradiation. Many common electronic devices can be driven by simply connecting evaporator units in series or in parallel without any other auxiliaries. Different from the previously proposed power generation mechanism, this study reveals that the water-enabled proton concentration fields in intermediate water region can also induce an additional ion electric field in free water region containing solute, to further enhance electricity output. Given the low-cost materials, simple self-regeneration design, scalable fabrication processes, and stable performance, this work offers a promising strategy for addressing the shortages of clean water and sustainable electricity.

19.
Nano Lett ; 24(12): 3710-3718, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484178

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted widespread attention in photocatalysis. Herein, we employ a novel strategy utilizing first-principles high-throughput inverse design of 2D Z-scheme heterojunctions for photocatalysis. This approach is anchored in high-throughput screening conditions, which are fundamentally based on the characteristics of carrier mechanisms influenced significantly by Z-scheme heterojunctions. A pivotal element of our screening process is the integration of the indirect-to-direct bandgap transition with momentum-matching band alignment in k-space, guiding us to combine two 2D indirect bandgap monolayers into direct Z-scheme heterojunctions characterized by pronounced interlayer excitons. Various stacking modes introduce extra and distinct degrees of freedom that can be useful for tuning the properties of heterostructures, encompassing factors such as components, stacking patterns, and sequences. We demonstrate that various stacking modes can facilitate the indirect-to-direct bandgap transition and the emergence of interlayer excitons. These findings provide exciting opportunities for designing Z-scheme heterojunctions in photocatalysis.

20.
Signal Transduct Target Ther ; 9(1): 42, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355848

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors other than ACE2 capable of promoting the entry of SARS-CoV-2 into cells. To address this question, we performed a genome-wide CRISPR-Cas9 activation library screening and found that Asialoglycoprotein receptor 1 (ASGR1) promoted SARS-CoV-2 pseudovirus infection of HeLa cells. In Huh-7 cells, simultaneous knockout of ACE2 and ASGR1 prevented SARS-CoV-2 pseudovirus infection. In the immortalized THLE-2 hepatocyte cell line and primary hepatic parenchymal cells, both of which barely expressed ACE2, SARS-CoV-2 pseudovirus could successfully establish an infection. However, after treatment with ASGR1 antibody or siRNA targeting ASGR1, the infection rate significantly dropped, suggesting that SARS-CoV-2 pseudovirus infects hepatic parenchymal cells mainly through an ASGR1-dependent mechanism. We confirmed that ASGR1 could interact with Spike protein, which depends on receptor binding domain (RBD) and N-terminal domain (NTD). Finally, we also used Immunohistochemistry and electron microscopy to verify that SARS-CoV-2 could infect primary hepatic parenchymal cells. After inhibiting ASGR1 in primary hepatic parenchymal cells by siRNA, the infection efficiency of the live virus decreased significantly. Collectively, these findings indicate that ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of hepatic parenchymal cells.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/fisiologia , Receptor de Asialoglicoproteína/genética , Células HeLa , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Hepatócitos , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA