Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112889

RESUMO

Amphioxus species are considered living fossils and are important in the evolutionary study of chordates and vertebrates. To explore viral homologous sequences, a high-quality annotated genome of the Beihai amphioxus (Branchiostoma belcheri beihai) was examined using virus sequence queries. In this study, 347 homologous fragments (HFs) of viruses were identified in the genome of B. belcheri beihai, of which most were observed on 21 genome assembly scaffolds. HFs were preferentially located within protein-coding genes, particularly in their CDS regions and promoters. A range of amphioxus genes with a high frequency of HFs is proposed, including histone-related genes that are homologous to the Histone or Histone H2B domains of viruses. Together, this comprehensive analysis of viral HFs provides insights into the neglected role of viral integration in the evolution of amphioxus.


Assuntos
Anfioxos , Animais , Anfioxos/genética , Histonas/genética , Genoma , Genômica , Filogenia
2.
mSphere ; 8(2): e0007423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939349

RESUMO

Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.


Assuntos
Bacteroidetes , Dermatophagoides farinae , Animais , Plasmídeos/genética , Bacteroidetes/genética , Genoma Bacteriano , Bactérias , Cromossomos
3.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35535514

RESUMO

Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1-2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.


Assuntos
Adaptação Fisiológica , Genômica , Adaptação Fisiológica/genética , Genoma , Humanos , Difosfato de Uridina
4.
BMC Genomics ; 19(1): 365, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769016

RESUMO

BACKGROUND: Drug resistance in Mycobacterium tuberculosis (MTB) is one of the major challenges in tuberculosis (TB) treatment. However, known mutations cannot explain all of the cases of resistance and little research has focused on the relationship between insertions / deletions (indels) and drug resistance. RESULTS: Here, we retrieved whole genome sequencing data of 743 drug-resistant MTB strains and 367 pan-susceptible strains from TB patients from the public domain to identify novel genomic markers of drug resistance. A total of 20 region markers containing genes and intergenic regions (IGRs) with significant statistical correlation with antibiotic resistance were revealed, four of which have been previously reported to be associated with drug resistance. In addition, 83 point markers containing frameshift (FS) mutations and IGR indels were also identified independently based on differences in their incidence rates between drug-sensitive and -resistant strains. Among the 83 point markers, eight indels were detected in known drug-associated genes or IGRs. Furthermore, the overlap between 20 region markers and 83 point markers further indicated their associations with drug resistance. The markers identified were involved in essential bacterial metabolic functions, including cell wall and transmembrane transporter functions. A strong correlation between FS mutations and mutations in DNA repair genes including I21V in alkA, R48G in mutT4 and P2R in nth was also found. CONCLUSIONS: This study identified a set of novel genetic markers with FS mutations and IGR indels associated with MTB drug resistance, which greatly broadens the pool of mutations related to MTB drug resistance. This insight may be important in identifying novel mechanisms of drug resistance in MTB.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mutação INDEL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma , Reparo do DNA/genética , Humanos , Mycobacterium tuberculosis/fisiologia
6.
Microb Drug Resist ; 22(7): 545-551, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27082669

RESUMO

The aim of this study is to investigate the mutation pattern of the folC gene in drug-resistant Mycobacterium tuberculosis (MTB) clinical isolates of global and Hong Kong cohorts. The public sequence read archives of 1,124 MTB genomes from three independent studies were retrieved and folC mutations existing solely in drug-resistant MTB strains were identified. A phylogenetic tree was constructed to analyze the segregation of mutation-related amino acid residues in the FolC structure. These mutation sites were further supported by direct Sanger sequencing of the folC gene among 254 clinical MTB isolates in a Hong Kong cohort. Homology modeling of wild-type and mutated FolC was performed, and the predicted structures were docked with hydroxydihydropteroate, the metabolic derivative of para-aminosalicylic acid (PAS), to evaluate the resultant binding affinity changes. Combining the results of three previous cohorts and our cohort, E40, I43, S150, and E153 are the most frequently affected amino acid residues in resistant isolates. Based on the distribution of mutations in the genome-based phylogenetic tree, lineage-specific mutation patterns were observed. Regarding the segregation of affected amino acid residues, the four most frequently affected residues are all in close proximity of the binding pocket for the PAS derivative. Molecular modeling results showed that mutations at E40, I43, and S150 can alter the structure of FolC putative binding pocket, causing the PAS derivative to bind outside of the now deformed pocket. This might ablate the interaction between the protein and the PAS derivative. To conclude, this study is the first comprehensive mutation pattern and bioinformatics analysis of the folC gene in MTB drug-resistant isolates. The distribution of mutations in phylogenetic lineages and protein structure is reported, analyzed, and discussed.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Mutação , Mycobacterium tuberculosis/genética , Peptídeo Sintases/química , Pterinas/química , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biologia Computacional , Farmacorresistência Bacteriana/genética , Expressão Gênica , Genótipo , Hong Kong , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Ligação Proteica , Pterinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
7.
Sci Rep ; 6: 23195, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26979494

RESUMO

Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.


Assuntos
Anfioxos/genética , Transcriptoma , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genes Homeobox , Anfioxos/crescimento & desenvolvimento , Anfioxos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribossomos/genética
8.
BMC Genomics ; 16: 265, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25886736

RESUMO

BACKGROUND: Panax notoginseng (Burk.) F.H. Chen is one of the most highly valued medicinal plants in the world. The major bioactive molecules are triterpene saponins, which are also known as ginsenosides. However, its large genome size has hindered the assembly of a draft genome by whole genome sequencing. Hence, genomic and transcriptomic details about P. notoginseng, especially its biosynthetic pathways and gene expression in different parts of the plant, have remained largely unknown until now. RESULTS: In this study, RNA sequencing of three different P. notoginseng tissues was performed using next generation DNA sequencing. After assembling the high quality sequencing reads into 107,340 unigenes, biochemical pathways were predicted and 9,908 unigenes were assigned to 135 KEGG pathways. Among them, 270 unigenes were identified to be involved in triterpene saponin biosynthesis. In addition, 350 and 342 unigenes were predicted to encode cytochrome P450s and glycosyltransferases, respectively, based on the annotation results, some of which encode enzymes responsible for the conversion of the triterpene saponin backbone into different ginsenosides. In particular, one unigene predominantly expressed in the root was annotated as CYP716A53v2, which probably participates in the formation of protopanaxatriol from protopanaxadiol in P. notoginseng. The differential expression of this gene was further confirmed by real-time PCR. CONCLUSIONS: We have established a global transcriptome dataset for P. notoginseng and provided additional genetic information for further genome-wide research and analyses. Candidate genes involved in ginsenoside biosynthesis, including putative cytochrome P450s and glycosyltransferases were obtained. The transcriptomes in different plant tissues also provide invaluable resources for future study of the differences in physiological processes and secondary metabolites in different parts of P. notoginseng.


Assuntos
Alcaloides/biossíntese , Ginsenosídeos/biossíntese , Panax notoginseng/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Glicosiltransferases/metabolismo , Panax notoginseng/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sapogeninas/metabolismo
9.
J Allergy Clin Immunol ; 135(2): 539-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445830

RESUMO

BACKGROUND: A sequenced house dust mite (HDM) genome would advance our understanding of HDM allergens, a common cause of human allergies. OBJECTIVE: We sought to produce an annotated Dermatophagoides farinae draft genome and develop a combined genomic-transcriptomic-proteomic approach for elucidation of HDM allergens. METHODS: A D farinae draft genome and transcriptome were assembled with high-throughput sequencing, accommodating microbiome sequences. The allergen gene structures were validated by means of Sanger sequencing. The mite's microbiome composition was determined, and the predominant genus was validated immunohistochemically. The allergenicity of a ubiquinol-cytochrome c reductase binding protein homologue was evaluated with immunoblotting, immunosorbent assays, and skin prick tests. RESULTS: The full gene structures of 20 canonical allergens and 7 noncanonical allergen homologues were produced. A novel major allergen, ubiquinol-cytochrome c reductase binding protein-like protein, was found and designated Der f 24. All 40 sera samples from patients with mite allergy had IgE antibodies against rDer f 24. Of 10 patients tested, 5 had positive skin reactions. The predominant bacterial genus among 100 identified species was Enterobacter (63.4%). An intron was found in the 13.8-kDa D farinae bacteriolytic enzyme gene, indicating that it is of HDM origin. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a phototransduction pathway in D farinae, as well as thiamine and amino acid synthesis pathways, which is suggestive of an endosymbiotic relationship between D farinae and its microbiome. CONCLUSION: An HDM genome draft produced from genomic, transcriptomic, and proteomic experiments revealed allergen genes and a diverse endosymbiotic microbiome, providing a tool for further identification and characterization of HDM allergens and development of diagnostics and immunotherapeutic vaccines.


Assuntos
Alérgenos/genética , Antígenos de Dermatophagoides/genética , Dermatophagoides farinae/genética , Dermatophagoides farinae/imunologia , Genoma , Transcriptoma , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Dermatophagoides farinae/anatomia & histologia , Dermatophagoides farinae/classificação , Dermatophagoides farinae/microbiologia , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Microbiota , Filogenia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA