Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Chem Biodivers ; : e202401034, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109873

RESUMO

The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor  is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1a-h), dithiocarbamate-Cu(II) complexes (2a-hCu) and disulfide derivatives (2a-e, 2i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7 and 15.1-111 µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1g may be a partial reversible inhibitor, while 2d and 2f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2d, 2f-Cu and 1g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2f-Cu and 2d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2d and 1g exhibit low cytotoxicity, whereas 2f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.

2.
Eur J Med Chem ; 265: 116055, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134748

RESUMO

The bacterial infection mediated by ß-lactamases MßLs and SßLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MßLs and SßLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MßLs (NDM-1, IMP-1) and SßLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 µM (except 1a and 1d on SßLs, IC50 > 50 µM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 µM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 µM, is a time- and dose-dependent inhibitor of both MßLs and SßLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MßLs and E. coli-SßLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MßLs and MßLs, in combating antibiotic-resistant bacteria.


Assuntos
Serina , beta-Lactamases , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Escherichia coli , Testes de Sensibilidade Microbiana , Serina/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
3.
Braz. arch. biol. technol ; 56(5): 811-816, Sept.-Oct. 2013. ilus, graf
Artigo em Inglês | LILACS | ID: lil-689808

RESUMO

A simple and effective salting-out method was developed for the purification of the metallo-β-lactamase CcrA from Bacteroides fragilis based on the plasmid pMSZ02, in which the crude protein secreted into growth medium was precipitated by 80% sulfate saturation of the medium and purified with Q-Sepharose to offer pure CcrA with yield of 20.1 mg per litter medium. The dependence of the amount of protein precipitation on sulfate saturation was investigated, which showed that more than 80% sulfate saturation resulted the maximum protein precipitated. The purified CcrA was evaluated by steady-state kinetics using penicillin G and cephalothin V as substrates, which showed the Km values of 68±2 and 17±2 µM and Kcat values of 63±1 and 102±3 S-1, respectively. The comparison with the data of the protein from literature method showed that the salting-out method was viable, and it could be useful for the purification of other proteins secreted into growth medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA