Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35366, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247249

RESUMO

Strontium (Sr) has important functions in bone remodeling. Incorporating strontium-doped α-calcium sulfate hemihydrate (SrCSH) into poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds were expected to increase its bio-activity and provide a potential material for bone tissue engineering. In the present study, Sr-containing aligned PLGA/SrCSH fibrous scaffolds similar to the architecture of natural bone were prepared via wet spinning. CCK-8 assay revealed that Sr-containing scaffolds possessed better bioactivity and supported favorable cell growth effectively. The aligned PLGA/SrCSH fibers exerted a contact effect on cell attachment, inducing regular cell alignment and influencing a series of cell behaviors. Releasing of high concentration Sr from a-PLGA/SrCSH scaffolds could induce high expression levels of BMP-2, increase ALP activity and upregulate RUNX-2 expression, and further promote the expressions of COL-I and OCN and the maximum mineralization. This study demonstrated that Sr and ordered structure in a-PLGA/SrCSH fibrous scaffolds could synergistically enhance the osteogenic differentiation of umbilical cord mesenchymal stem cells (UCMSCs) by regulating cell arrangement and expressions of osteogenic genes.


Assuntos
Osso e Ossos , Osteogênese , Humanos , Diferenciação Celular , Proliferação de Células , Estrôncio/farmacologia
3.
JOR Spine ; 7(1): e1309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38222802

RESUMO

Background: Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim: The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods: In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results: we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.

4.
Biol Pharm Bull ; 47(1): 292-302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281773

RESUMO

Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Proteômica , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
5.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513270

RESUMO

The activation of innate antiviral immunity is a promising approach for combatting viral infections. In this study, we screened Chinese herbs that activated human immunity and identified coptisine as a potent inhibitor of the influenza virus with an EC50 of 10.7 µM in MDCK cells. The time of an addition assay revealed that pre-treatment with coptisine was more effective at reducing viral replication than co-treatment or post-treatment. Our bulk RNA-sequencing data showed that coptisine upregulated the p21 signaling pathway in MDCK cells, which was responsible for its antiviral effects. Specifically, coptisine increased the expression of p21 and FOXO1 in a dose-dependent manner while leaving the MELK expression unchanged. Docking analysis revealed that coptisine likely inhibited MELK activity directly by forming hydrogen bonds with ASP-150 and GLU-87 in the catalytic pocket. These findings suggest that coptisine may be a promising antiviral agent that regulates the p21 signaling pathway to inhibit viral replication.


Assuntos
Berberina , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Berberina/farmacologia , Replicação Viral , Proteínas Serina-Treonina Quinases
6.
Bioengineered ; 14(1): 165-178, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377392

RESUMO

To establish a standard Traditional Chinese medicine (TCM) bone setting technique, standardize the operation and inherit the TCM bone setting technique. This project was based on the interactive tracking of bone setting techniques with a dedicated position tracker, the motion tracking of bone setting techniques based on RGBD (Red Green Blue Depth) cameras, the digital analysis of bone setting techniques, and the design of the virtual reality platform for bone setting techniques. These key technical researches were combined to construct an interactive bone setting technique. The virtual simulation system can reproduce the implementation process of the expert's bone setting technique. The user can observe the implementation of the manipulative technique from multiple angles; through human-computer interaction, the whole process of implementation of the bone setting technique can be simulated, and the movement and reduction of the affected bone can be observed at the same time. It can be used as a teaching and training system for assisting bone setting techniques. Students can use the system to carry out repeated self-training, and can instantly compare with the standard techniques of the expert database, breaking the traditional teaching mode of 'expected and unspeakable' and avoid directly using patients. Therefore, this research makes it possible to reduce teaching costs, reduce risks, improve teaching quality, and make up for the lack of teaching conditions. It is very positive for the inheritance of the traditional Chinese 'intangible culture' of bone setting techniques, and to promote the digitalization and standardization of bone setting techniques.


Using computer technology to digitally record bone-setting manipulations.Construct a virtual simulation system for interactive bone-setting manipulation.Promote the digitization and standardization of bone-setting techniques.


Assuntos
Realidade Virtual , Humanos , Simulação por Computador , Medicina Tradicional Chinesa , Computadores
7.
Phytomedicine ; 118: 154939, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354697

RESUMO

BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS: We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS: We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION: Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia
9.
J Ethnopharmacol ; 311: 116476, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031825

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shang-Ke-Huang-Shui (SKHS) is a classic traditional Chinese medicine formula originally from the southern China city of Foshan. It has been widely used in the treatment of osteoarthritis (OA) but underlying molecular mechanisms remain unclear. AIM OF STUDY: Recently, activation of C-X-C chemokine receptor type 4 (CXCR4) signaling has been reported to induce cartilage degradation in OA patients; therefore, inhibition of CXCR4 signaling has becoming a promising approach for OA treatment. The aim of this study was to validate the cartilage protective effect of SKHS and test whether the anti-OA effects of SKHS depend on its inhibition on CXCR4 signaling. Additionally, CXCR4 antagonist in SKHS should be identified and its anti-OA activity should also be tested in vitro and in vivo. METHODS: The anti-OA effects of SKHS and the newly identified CXCR4 antagonist was evaluated by monosodium iodoacetate (MIA)-induced rats. The articular cartilage surface was examined by hematoxylin and eosin (H&E) staining and Safranin O-Fast Green (S-F) staining whereas the subchondral bone was examined by micro-CT. CXCR4 antagonist screenings were conducted by molecular docking and calcium response assay. The CXCR4 antagonist was characterized by UPLC/MS/MS. The bulk RNA-Seq was conducted to identify CXCR4-mediated signaling pathway. The expression of ADAMTS4,5 was tested by qPCR and Western blot. RESULTS: SKHS protected rats from MIA-induced cartilage degradation and subchondral bone damage. SKHS also inhibited CXCL12-indcued ADAMTS4,5 overexpression in chondrocytes through inhibiting Akt pathway. Coptisine has been identified as the most potent CXCR4 antagonist in SKHS. Coptisine reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes. Furthermore, in MIA-induced OA model, the repaired cartilage and subchondral bone were observed in the coptisine-treated rats. CONCLUSION: We first report here that the traditional Chinese medicine formula SKHS and its predominate phytochemical coptisine significantly alleviated cartilage degradation as well as subchondral bone damage through inhibiting CXCR4-mediated ADAMTS4,5 overexpression. Together, our work has provided an important insight of the molecular mechanism of SKHS and coptisine for their treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Ratos , Animais , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Condrócitos , Transdução de Sinais , Osteoartrite do Joelho/metabolismo , Receptores CXCR4/metabolismo
10.
J Biomater Appl ; 37(9): 1568-1581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917676

RESUMO

Accumulating evidence indicates that the mechanical microenvironment exerts profound influences on inflammation and immune modulation, which are likely to be key factors in successful tissue regeneration. The elastic modulus (Em) of the matrix may be a useful adjustable property to control macrophage activation and the overall inflammatory response. This study constituted a series of Em-tunable liquid crystalline cell model (HpCEs) resembling the viscoelastic characteristic of ECM and explored how mechanical microenvironment induced by liquid crystalline soft matter matrix affected macrophage activation and phenotypes. We have shown that HpCEs prepared in this work exhibited typical cholesteric liquid crystal phase and distinct viscoelastic rheological characteristics. All liquid crystalline HpCE matrices facilitated macrophages growth and maintained cell activity. Macrophages in lower-Em HpCE matrices were more likely to polarize toward the pro-inflammatory M1 phenotype. Conversely, the higher-Em HpCEs induced macrophages into an elongated shape and upregulated M2-related markers. Furthermore, the higher-Em HpCEs (HpCE-O1, HpCE-H2, HpCE-H1) could coax sequential polarization states of RAW264.7 from a classically activated "M1" state toward alternatively activated "M2" state in middle and later stage of cell culture (within 3-7 days in this work), suggesting that the HpCE-based strategies could manipulate the local immune microenvironment and promote the dominance of the pro-inflammatory signals in early stages, while M2 macrophages in later stages. The liquid crystalline soft mode fabricated in this work maybe offer a new design guideline for in vitro cell models and applications.


Assuntos
Cristais Líquidos , Humanos , Macrófagos , Fenótipo , Inflamação , Ativação de Macrófagos
11.
Phytomedicine ; 108: 154506, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403512

RESUMO

BACKGROUND AND PURPOSE: C-X-C chemokine receptor type 4 (CXCR4) inhibition protects cartilage in osteoarthritis (OA) animal models. Therefore, CXCR4 has becoming a novel target for OA drug development. Since dietary and herbal supplements have been widely used for joint health, we hypothesized that some supplements exhibit protective effects on OA cartilage through inhibiting CXCR4 signaling. METHODS: The single-cell RNA sequencing data of OA patients (GSE152805) was re-analyzed by Scanpy 1.9.0. The docking screening of CXCR4 antagonists was conducted by Autodock Vina 1.2.0. The CXCR4 antagonistic activity was evaluated by calcium response in THP-1 cells. Signaling pathway study was conducted by bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. The anti-OA activity was evaluated in monosodium iodoacetate (MIA)-induced rats. RESULTS: Astragaloside IV (ASN IV), the predominate phytochemical in Astragalus membranaceus, has been identified as a novel CXCR4 antagonist. ASN IV reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes through blocking Akt signaling pathway. Furthermore, ASN IV administration significantly repaired the damaged cartilage and subchondral bone in MIA-induced rats. CONCLUSION: The blockade of CXCR4 signaling by ASN IV could explain anti-OA activities of Astragalus membranaceus by protection of cartilage degradation in OA patients. Since ASN IV as an antiviral has been approved by China National Medical Products Administration for testing in people, repurposing of ASN IV as a joint protective agent might be a promising strategy for OA drug development.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Ácido Iodoacético/toxicidade , Ácido Iodoacético/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais , Astragalus propinquus , Receptores CXCR4/metabolismo
12.
ACS Omega ; 7(49): 45023-45035, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530252

RESUMO

Cellular drug response (concentration required for obtaining 50% of a maximum cellular effect, EC50) can be predicted by the intracellular bioavailability (F ic) and biochemical activity (half-maximal inhibitory concentration, IC50) of drugs. In an ideal model, the cellular negative log of EC50 (pEC50) equals the sum of log F ic and the negative log of IC50 (pIC50). Here, we measured F ic's of remdesivir, favipiravir, and hydroxychloroquine in various cells and calculated their anti-SARS-CoV-2 EC50's. The predicted EC50's are close to the observed EC50's in vitro. When the lung concentrations of antiviral drugs are higher than the predicted EC50's in alveolar type 2 cells, the antiviral drugs inhibit virus replication in vivo, and vice versa. Overall, our results indicate that both in vitro and in vivo antiviral activities of drugs can be predicted by their intracellular bioavailability and biochemical activity without using virus. This virus-free strategy can help medicinal chemists and pharmacologists to screen antivirals during early drug discovery, especially for researchers who are not able to work in the high-level biosafety lab.

13.
Life (Basel) ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36362861

RESUMO

Coronavirus Disease 2019 (COVID-19) is a highly infectious and pathogenic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early in this epidemic, the herbal formulas used in traditional Chinese medicine (TCM) were widely used for the treatment of COVID-19 in China. According to Venn diagram analysis, we found that Glycyrrhizae Radix et Rhizoma is a frequent herb in TCM formulas against COVID-19. The extract of Glycyrrhizae Radix et Rhizoma exhibits an anti-SARS-CoV-2 replication activity in vitro, but its pharmacological mechanism remains unclear. We here demonstrate that glycyrrhizin, the main active ingredient of Glycyrrhizae Radix et Rhizoma, prevents the coronavirus from entering cells by targeting angiotensin-converting enzyme 2 (ACE2). Glycyrrhizin inhibited the binding of the spike protein of the SARS-CoV-2 to ACE2 in our Western blot-based assay. The following bulk RNA-seq analysis showed that glycyrrhizin down-regulated ACE2 expression in vitro which was further confirmed by Western blot and quantitative PCR. Together, we believe that glycyrrhizin inhibits SARS-CoV-2 entry into cells by targeting ACE2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA