Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
2.
Anal Methods ; 14(29): 2849-2856, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35815800

RESUMO

Sulfites are used widely in food and beverage production to prevent browning or oxidation. However, the overingestion of sulfites is harmful to human health and may cause medical complications. Chinese herbal teas have been widely consumed for centuries. However, sulfite levels in Chinese herbal teas are rarely investigated and reported. Here, we present a simple, sensitive, and quantitative method to determine sulfites in Chinese herbal teas using ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) coupled with dispersive solid phase extraction. The method utilized a SeQuant ZIC-HILIC column for separation, and the optimal gradient eluents consisted of acetonitrile and aqueous solution with 0.1% acetic acid and 10 mM ammonium acetate. Porous chitosan/partially reduced graphene oxide/diatomite (CS/prGO/DM) composites were used as efficient dispersive solid phase extraction adsorbents for sample preparation. Several parameters were investigated during the extraction process, including sample-to-extraction solvent volume ratios, the extraction procedure and dosage of the adsorbent. Under the optimum conditions, the developed method gave a good determination coefficient (r2 > 0.99), low detection limits (0.51-12.1 µg kg-1) and high recoveries in the range of 83.8-102.7% at different spiked levels. The method has the great advantages of being time saving, good reproducibility and much lower detection limits when compared to titration methods. The method was further applied to analyze real herbal tea samples collected from the local market, demonstrating that our developed method is robust and useful for determining sulfites in practical application.


Assuntos
Chás de Ervas , China , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Humanos , Reprodutibilidade dos Testes , Sulfitos/análise , Espectrometria de Massas em Tandem/métodos , Chás de Ervas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA