Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 162(Pt B): 112052, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461386

RESUMO

Non-destructive detection of human foodborne pathogens is critical to ensuring food safety and public health. Here, we report a new method using a paper chromogenic array coupled with a machine learning neural network (PCA-NN) to detect viable pathogens in the presence of background microflora and spoilage microbe in seafood via volatile organic compounds sensing. Morganella morganii and Shewanella putrefaciens were used as the model pathogen and spoilage bacteria. The study evaluated microbial detection in monoculture and cocktail multiplex detection. The accuracy of PCA-NN detection was first assessed on standard media and later validated on cod and salmon as real seafood models with pathogenic and spoilage bacteria, as well as background microflora. In this study PCA-NN method successfully identified pathogenic microorganisms from microflora with or without the prevalent spoilage microbe, Shewanella putrefaciens in seafood, with accuracies ranging from 90% to 99%. This approach has the potential to advance smart packaging by achieving nondestructive pathogen surveillance on food without enrichment, incubation, or other sample preparation.


Assuntos
Redes Neurais de Computação , Shewanella putrefaciens , Humanos , Aprendizado de Máquina , Inocuidade dos Alimentos , Embalagem de Produtos , Alimentos Marinhos
2.
Adv Sci (Weinh) ; 9(3): e2103373, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837482

RESUMO

The requirement of a large input amount (500 ng) for Nanopore direct RNA-seq presents a major challenge for low input transcriptomic analysis and early pathogen surveillance. The high RNA input requirement is attributed to significant sample loss associated with library preparation using solid-phase reversible immobilization (SPRI) beads. A novel solid-phase catalysis strategy for RNA library preparation to circumvent the need for SPRI bead purification to remove enzymes is reported here. This new approach leverages concurrent processing of non-polyadenylated transcripts with immobilized poly(A) polymerase and T4 DNA ligase, followed by directly loading the prepared library onto a flow cell. Whole transcriptome sequencing, using a human pathogen Listeria monocytogenes as a model, demonstrates this new method displays little sample loss, takes much less time, and generates higher sequencing throughput correlated with reduced nanopore fouling compared to the current library preparation for 500 ng input. Consequently, this approach enables Nanopore low-input direct RNA-seq, improving pathogen detection and transcript identification in a microbial community standard with spike-in transcript controls. Besides, as evident in the bioinformatic analysis, the new method provides accurate RNA consensus with high fidelity and identifies higher numbers of expressed genes for both high and low input RNA amounts.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Análise de Sequência de RNA/métodos , Humanos
3.
Biosens Bioelectron ; 183: 113209, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33836430

RESUMO

We have developed an inexpensive, standardized paper chromogenic array (PCA) integrated with a machine learning approach to accurately identify single pathogens (Listeria monocytogenes, Salmonella Enteritidis, or Escherichia coli O157:H7) or multiple pathogens (either in multiple monocultures, or in a single cocktail culture), in the presence of background microflora on food. Cantaloupe, a commodity with significant volatile organic compound (VOC) emission and large diverse populations of background microflora, was used as the model food. The PCA was fabricated from a paper microarray via photolithography and paper microfluidics, into which 22 chromogenic dye spots were infused and to which three red/green/blue color-standard dots were taped. When exposed to VOCs emitted by pathogens of interest, dye spots exhibited distinguishable color changes and pattern shifts, which were automatically segmented and digitized into a ΔR/ΔG/ΔB database. We developed an advanced deep feedforward neural network with a learning rate scheduler, L2 regularization, and shortcut connections. After training on the ΔR/ΔG/ΔB database, the network demonstrated excellent performance in identifying pathogens in single monocultures, multiple monocultures, and in cocktail culture, and in distinguishing them from the background signal on cantaloupe, providing accuracy of up to 93% and 91% under ambient and refrigerated conditions, respectively. With its combination of speed, reliability, portability, and low cost, this nondestructive approach holds great potential to significantly advance culture-free pathogen detection and identification on food, and is readily extendable to other food commodities with complex microflora.


Assuntos
Técnicas Biossensoriais , Listeria monocytogenes , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Simbiose
4.
Nat Food ; 2(2): 110-117, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37117406

RESUMO

Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. Here we report a pathogen identification system using a paper chromogenic array (PCA) enabled by machine learning. The PCA consists of a paper substrate impregnated with 23 chromogenic dyes and dye combinations, which undergo colour changes on exposure to volatile organic compounds emitted by pathogens of interest. These colour changes are digitized and used to train a multi-layer neural network (NN), endowing it with high-accuracy (91-95%) strain-specific pathogen identification and quantification capabilities. The trained PCA-NN system can distinguish between viable Escherichia coli, E. coli O157:H7 and other viable pathogens, and can simultaneously identify both E. coli O157:H7 and Listeria monocytogenes on fresh-cut romaine lettuce, which represents a realistic and complex environment. This approach has the potential to advance non-destructive pathogen detection and identification on food, without enrichment, culturing, incubation or other sample preparation steps.

5.
Front Microbiol ; 11: 514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328039

RESUMO

Viable pathogenic bacteria are major biohazards that pose a significant threat to food safety. Despite the recent developments in detection platforms, multiplex identification of viable pathogens in food remains a major challenge. A novel strategy is developed through direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION to achieve real-time multiplex identification of viable pathogens in food. Specifically, this study reports an optimized universal Nanopore sample extraction and library preparation protocol applicable to both Gram-positive and Gram-negative pathogenic bacteria, demonstrated using a cocktail culture of E. coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes, which were selected based on their impact on economic loss or prevalence in recent outbreaks. Further evaluation and validation confirmed the accuracy of direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing using Sanger sequencing and selective media. The study also included a comparison of different bioinformatic pipelines for metatranscriptomic and amplicon genomic analysis. MEGAN without rRNA mapping showed the highest accuracy of multiplex identification using the metatranscriptomic data. EPI2ME also demonstrated high accuracy using multiplex RT-PCR amplicon sequencing. In addition, a systemic comparison was drawn between Nanopore sequencing of the direct metatranscriptome RNA-seq and RT-PCR amplicons. Both methods are comparable in accuracy and time. Nanopore sequencing of RT-PCR amplicons has higher sensitivity, but Nanopore metatranscriptome sequencing excels in read length and dealing with complex microbiome and non-bacterial transcriptome backgrounds.

6.
Commun Biol ; 2: 267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341966

RESUMO

PCR amplification of Hi-C libraries introduces unusable duplicates and results in a biased representation of chromatin interactions. We present a simplified, fast, and economically efficient Hi-C library preparation procedure, SAFE Hi-C, which generates sufficient non-amplified ligation products for deep sequencing from 30 million Drosophila cells. Comprehensive analysis of the resulting data shows that amplification-free Hi-C preserves higher complexity of chromatin interaction and lowers sequencing depth for the same number of unique paired reads. For human cells which have a large genome, SAFE Hi-C recovers enough ligated fragments for direct high-throughput sequencing without amplification from as few as 250,000 cells. Comparison with published in situ Hi-C data from millions of human cells demonstrates that amplification introduces distance-dependent amplification bias, which results in an increased background noise level against genomic distance. With amplification bias avoided, SAFE Hi-C may produce a chromatin interaction network more faithfully reflecting the real three-dimensional genomic architecture.


Assuntos
Cromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Drosophila/genética , Genômica , Humanos , Reação em Cadeia da Polimerase/métodos , Mapas de Interação de Proteínas , Globinas beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA