Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(27): 6716-6723, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38899871

RESUMO

Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 µm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Impressão Tridimensional , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Proteínas de Ervilha/química , Metacrilatos/química , Ratos Sprague-Dawley , Hidrogéis/química , Hidrogéis/farmacologia , Tinta
2.
Food Funct ; 15(13): 6798-6824, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836693

RESUMO

In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/ß-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.


Assuntos
Curcumina , Curcumina/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/prevenção & controle , Curcuma/química , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo
3.
Small ; 20(28): e2309476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348999

RESUMO

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.


Assuntos
Nanocompostos , Nanocompostos/química , Animais , Recidiva Local de Neoplasia/prevenção & controle , Camundongos , Hidrogéis/química , Bandagens , Melanoma/patologia , Linhagem Celular Tumoral , Staphylococcus aureus/efeitos dos fármacos , Humanos , Injeções , Microambiente Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
J Funct Biomater ; 15(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391890

RESUMO

Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.

5.
Mater Today Bio ; 23: 100875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075251

RESUMO

Complete and rapid healing of infected skin wounds remains a challenge in current clinical treatment. In this study, we prepared a self-healing injectable CK hydrogel by crosslinking two natural polysaccharides, carboxymethyl chitosan and oxidized konjac glucomannan, based on the Schiff base bond. To enhance the biological function of the hydrogel, we multi-functionalized hydrogen by loading it with berberine (BBR) and stem cell-derived exosomes (Exo), forming a composite hydrogel, CK@BBR&Exo, which could be injected directly into the wound through a needle and adhered to the wound. Furthermore, the self-healing properties of CK@BBR&Exo increased its usefulness and service life. Additionally, the drug-loaded CK@BBR&Exo hydrogel was versatile, inhibiting bacterial growth, regulating the inflammatory response, and promoting neovascularization in infected skin wounds, thus achieving the rapid healing of infected skin wounds. These results suggest that the CK@BBR&Exo-injectable self-healing hydrogel is an ideal dressing for treating infected skin wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA